Description: Lemma 3 for rngqiprngghm . (Contributed by AV, 25-Feb-2025) (Proof shortened by AV, 24-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rng2idlring.r | |
|
rng2idlring.i | |
||
rng2idlring.j | |
||
rng2idlring.u | |
||
rng2idlring.b | |
||
rng2idlring.t | |
||
rng2idlring.1 | |
||
Assertion | rngqiprngghmlem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idlring.r | |
|
2 | rng2idlring.i | |
|
3 | rng2idlring.j | |
|
4 | rng2idlring.u | |
|
5 | rng2idlring.b | |
|
6 | rng2idlring.t | |
|
7 | rng2idlring.1 | |
|
8 | 1 2 3 4 5 6 7 | rngqiprng1elbas | |
9 | 8 | anim1i | |
10 | 3anass | |
|
11 | 9 10 | sylibr | |
12 | eqid | |
|
13 | 5 12 6 | rngdi | |
14 | 1 11 13 | syl2an2r | |
15 | 3 12 | ressplusg | |
16 | 2 15 | syl | |
17 | 16 | oveqd | |
18 | 17 | adantr | |
19 | 14 18 | eqtrd | |