Description: Lemma 2 for rngqiprnglin . (Contributed by AV, 28-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rng2idlring.r | |
|
rng2idlring.i | |
||
rng2idlring.j | |
||
rng2idlring.u | |
||
rng2idlring.b | |
||
rng2idlring.t | |
||
rng2idlring.1 | |
||
rngqiprngim.g | |
||
rngqiprngim.q | |
||
Assertion | rngqiprnglinlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idlring.r | |
|
2 | rng2idlring.i | |
|
3 | rng2idlring.j | |
|
4 | rng2idlring.u | |
|
5 | rng2idlring.b | |
|
6 | rng2idlring.t | |
|
7 | rng2idlring.1 | |
|
8 | rngqiprngim.g | |
|
9 | rngqiprngim.q | |
|
10 | ringrng | |
|
11 | 4 10 | syl | |
12 | 3 11 | eqeltrrid | |
13 | 1 2 12 | rng2idlsubrng | Could not format ( ph -> I e. ( SubRng ` R ) ) : No typesetting found for |- ( ph -> I e. ( SubRng ` R ) ) with typecode |- |
14 | subrngsubg | Could not format ( I e. ( SubRng ` R ) -> I e. ( SubGrp ` R ) ) : No typesetting found for |- ( I e. ( SubRng ` R ) -> I e. ( SubGrp ` R ) ) with typecode |- | |
15 | 13 14 | syl | |
16 | 1 2 15 | 3jca | |
17 | eqid | |
|
18 | 8 | oveq2i | |
19 | 9 18 | eqtri | |
20 | eqid | |
|
21 | 17 19 5 6 20 | qusmulrng | |
22 | 16 21 | sylan | |
23 | 8 | eceq2i | |
24 | 8 | eceq2i | |
25 | 23 24 | oveq12i | |
26 | 8 | eceq2i | |
27 | 22 25 26 | 3eqtr4g | |
28 | 27 | eqcomd | |