Metamath Proof Explorer


Theorem rngqiprnglinlem2

Description: Lemma 2 for rngqiprnglin . (Contributed by AV, 28-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r φRRng
rng2idlring.i φI2IdealR
rng2idlring.j J=R𝑠I
rng2idlring.u φJRing
rng2idlring.b B=BaseR
rng2idlring.t ·˙=R
rng2idlring.1 1˙=1J
rngqiprngim.g ˙=R~QGI
rngqiprngim.q Q=R/𝑠˙
Assertion rngqiprnglinlem2 φABCBA·˙C˙=A˙QC˙

Proof

Step Hyp Ref Expression
1 rng2idlring.r φRRng
2 rng2idlring.i φI2IdealR
3 rng2idlring.j J=R𝑠I
4 rng2idlring.u φJRing
5 rng2idlring.b B=BaseR
6 rng2idlring.t ·˙=R
7 rng2idlring.1 1˙=1J
8 rngqiprngim.g ˙=R~QGI
9 rngqiprngim.q Q=R/𝑠˙
10 ringrng JRingJRng
11 4 10 syl φJRng
12 3 11 eqeltrrid φR𝑠IRng
13 1 2 12 rng2idlsubrng Could not format ( ph -> I e. ( SubRng ` R ) ) : No typesetting found for |- ( ph -> I e. ( SubRng ` R ) ) with typecode |-
14 subrngsubg Could not format ( I e. ( SubRng ` R ) -> I e. ( SubGrp ` R ) ) : No typesetting found for |- ( I e. ( SubRng ` R ) -> I e. ( SubGrp ` R ) ) with typecode |-
15 13 14 syl φISubGrpR
16 1 2 15 3jca φRRngI2IdealRISubGrpR
17 eqid R~QGI=R~QGI
18 8 oveq2i R/𝑠˙=R/𝑠R~QGI
19 9 18 eqtri Q=R/𝑠R~QGI
20 eqid Q=Q
21 17 19 5 6 20 qusmulrng RRngI2IdealRISubGrpRABCBAR~QGIQCR~QGI=A·˙CR~QGI
22 16 21 sylan φABCBAR~QGIQCR~QGI=A·˙CR~QGI
23 8 eceq2i A˙=AR~QGI
24 8 eceq2i C˙=CR~QGI
25 23 24 oveq12i A˙QC˙=AR~QGIQCR~QGI
26 8 eceq2i A·˙C˙=A·˙CR~QGI
27 22 25 26 3eqtr4g φABCBA˙QC˙=A·˙C˙
28 27 eqcomd φABCBA·˙C˙=A˙QC˙