Metamath Proof Explorer


Theorem rngqiprnglinlem3

Description: Lemma 3 for rngqiprnglin . (Contributed by AV, 28-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r φRRng
rng2idlring.i φI2IdealR
rng2idlring.j J=R𝑠I
rng2idlring.u φJRing
rng2idlring.b B=BaseR
rng2idlring.t ·˙=R
rng2idlring.1 1˙=1J
rngqiprngim.g ˙=R~QGI
rngqiprngim.q Q=R/𝑠˙
Assertion rngqiprnglinlem3 φABCBA˙QC˙BaseQ

Proof

Step Hyp Ref Expression
1 rng2idlring.r φRRng
2 rng2idlring.i φI2IdealR
3 rng2idlring.j J=R𝑠I
4 rng2idlring.u φJRing
5 rng2idlring.b B=BaseR
6 rng2idlring.t ·˙=R
7 rng2idlring.1 1˙=1J
8 rngqiprngim.g ˙=R~QGI
9 rngqiprngim.q Q=R/𝑠˙
10 1 2 3 4 5 6 7 8 9 rngqiprnglinlem2 φABCBA·˙C˙=A˙QC˙
11 1 anim1i φABCBRRngABCB
12 3anass RRngABCBRRngABCB
13 11 12 sylibr φABCBRRngABCB
14 5 6 rngcl RRngABCBA·˙CB
15 13 14 syl φABCBA·˙CB
16 eqid BaseQ=BaseQ
17 8 9 5 16 quseccl0 RRngA·˙CBA·˙C˙BaseQ
18 1 15 17 syl2an2r φABCBA·˙C˙BaseQ
19 10 18 eqeltrrd φABCBA˙QC˙BaseQ