Description: Lemma 3 for rngqiprnglin . (Contributed by AV, 28-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rng2idlring.r | |
|
rng2idlring.i | |
||
rng2idlring.j | |
||
rng2idlring.u | |
||
rng2idlring.b | |
||
rng2idlring.t | |
||
rng2idlring.1 | |
||
rngqiprngim.g | |
||
rngqiprngim.q | |
||
Assertion | rngqiprnglinlem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idlring.r | |
|
2 | rng2idlring.i | |
|
3 | rng2idlring.j | |
|
4 | rng2idlring.u | |
|
5 | rng2idlring.b | |
|
6 | rng2idlring.t | |
|
7 | rng2idlring.1 | |
|
8 | rngqiprngim.g | |
|
9 | rngqiprngim.q | |
|
10 | 1 2 3 4 5 6 7 8 9 | rngqiprnglinlem2 | |
11 | 1 | anim1i | |
12 | 3anass | |
|
13 | 11 12 | sylibr | |
14 | 5 6 | rngcl | |
15 | 13 14 | syl | |
16 | eqid | |
|
17 | 8 9 5 16 | quseccl0 | |
18 | 1 15 17 | syl2an2r | |
19 | 10 18 | eqeltrrd | |