Metamath Proof Explorer


Theorem rngringbdlem2

Description: A non-unital ring is unital if and only if there is a (two-sided) ideal of the ring which is unital, and the quotient of the ring and the ideal is unital. (Proposed by GL, 12-Feb-2025.) (Contributed by AV, 14-Feb-2025)

Ref Expression
Hypotheses rngringbd.r φRRng
rngringbd.i φI2IdealR
rngringbd.j J=R𝑠I
rngringbd.u φJRing
rngringbd.q Q=R/𝑠R~QGI
Assertion rngringbdlem2 φQRingRRing

Proof

Step Hyp Ref Expression
1 rngringbd.r φRRng
2 rngringbd.i φI2IdealR
3 rngringbd.j J=R𝑠I
4 rngringbd.u φJRing
5 rngringbd.q Q=R/𝑠R~QGI
6 eqid Q×𝑠J=Q×𝑠J
7 simpr φQRingQRing
8 4 adantr φQRingJRing
9 6 7 8 xpsringd φQRingQ×𝑠JRing
10 1 adantr φQRingRRng
11 2 adantr φQRingI2IdealR
12 eqid BaseR=BaseR
13 eqid R=R
14 eqid 1J=1J
15 eqid R~QGI=R~QGI
16 eqid BaseQ=BaseQ
17 eqid xBaseRxR~QGI1JRx=xBaseRxR~QGI1JRx
18 10 11 3 8 12 13 14 15 5 16 6 17 rngqiprngim φQRingxBaseRxR~QGI1JRxRRngIsomQ×𝑠J
19 rngimcnv xBaseRxR~QGI1JRxRRngIsomQ×𝑠JxBaseRxR~QGI1JRx-1Q×𝑠JRngIsomR
20 18 19 syl φQRingxBaseRxR~QGI1JRx-1Q×𝑠JRngIsomR
21 rngisomring Q×𝑠JRingRRngxBaseRxR~QGI1JRx-1Q×𝑠JRngIsomRRRing
22 9 10 20 21 syl3anc φQRingRRing