Metamath Proof Explorer


Theorem rngsubdi

Description: Ring multiplication distributes over subtraction. ( subdi analog.) (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 2-Jul-2014) ringsubdi generalized for non-unital rings. (Revised by AV, 23-Feb-2025)

Ref Expression
Hypotheses rngsubdi.b B=BaseR
rngsubdi.t ·˙=R
rngsubdi.m -˙=-R
rngsubdi.r φRRng
rngsubdi.x φXB
rngsubdi.y φYB
rngsubdi.z φZB
Assertion rngsubdi φX·˙Y-˙Z=X·˙Y-˙X·˙Z

Proof

Step Hyp Ref Expression
1 rngsubdi.b B=BaseR
2 rngsubdi.t ·˙=R
3 rngsubdi.m -˙=-R
4 rngsubdi.r φRRng
5 rngsubdi.x φXB
6 rngsubdi.y φYB
7 rngsubdi.z φZB
8 eqid invgR=invgR
9 rnggrp RRngRGrp
10 4 9 syl φRGrp
11 1 8 10 7 grpinvcld φinvgRZB
12 eqid +R=+R
13 1 12 2 rngdi RRngXBYBinvgRZBX·˙Y+RinvgRZ=X·˙Y+RX·˙invgRZ
14 4 5 6 11 13 syl13anc φX·˙Y+RinvgRZ=X·˙Y+RX·˙invgRZ
15 1 2 8 4 5 7 rngmneg2 φX·˙invgRZ=invgRX·˙Z
16 15 oveq2d φX·˙Y+RX·˙invgRZ=X·˙Y+RinvgRX·˙Z
17 14 16 eqtrd φX·˙Y+RinvgRZ=X·˙Y+RinvgRX·˙Z
18 1 12 8 3 grpsubval YBZBY-˙Z=Y+RinvgRZ
19 6 7 18 syl2anc φY-˙Z=Y+RinvgRZ
20 19 oveq2d φX·˙Y-˙Z=X·˙Y+RinvgRZ
21 1 2 rngcl RRngXBYBX·˙YB
22 4 5 6 21 syl3anc φX·˙YB
23 1 2 rngcl RRngXBZBX·˙ZB
24 4 5 7 23 syl3anc φX·˙ZB
25 1 12 8 3 grpsubval X·˙YBX·˙ZBX·˙Y-˙X·˙Z=X·˙Y+RinvgRX·˙Z
26 22 24 25 syl2anc φX·˙Y-˙X·˙Z=X·˙Y+RinvgRX·˙Z
27 17 20 26 3eqtr4d φX·˙Y-˙Z=X·˙Y-˙X·˙Z