Description: The topology of an extension of RR is Hausdorff. (Contributed by Thierry Arnoux, 7-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rrexthaus.1 | |
|
Assertion | rrexthaus | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrexthaus.1 | |
|
2 | rrextnrg | |
|
3 | nrgngp | |
|
4 | ngpxms | |
|
5 | 2 3 4 | 3syl | |
6 | eqid | |
|
7 | eqid | |
|
8 | 1 6 7 | xmstopn | |
9 | 5 8 | syl | |
10 | 6 7 | xmsxmet | |
11 | eqid | |
|
12 | 11 | methaus | |
13 | 5 10 12 | 3syl | |
14 | 9 13 | eqeltrd | |