Metamath Proof Explorer


Theorem rrexthaus

Description: The topology of an extension of RR is Hausdorff. (Contributed by Thierry Arnoux, 7-Sep-2018)

Ref Expression
Hypothesis rrexthaus.1 K=TopOpenR
Assertion rrexthaus RℝExtKHaus

Proof

Step Hyp Ref Expression
1 rrexthaus.1 K=TopOpenR
2 rrextnrg RℝExtRNrmRing
3 nrgngp RNrmRingRNrmGrp
4 ngpxms RNrmGrpR∞MetSp
5 2 3 4 3syl RℝExtR∞MetSp
6 eqid BaseR=BaseR
7 eqid distRBaseR×BaseR=distRBaseR×BaseR
8 1 6 7 xmstopn R∞MetSpK=MetOpendistRBaseR×BaseR
9 5 8 syl RℝExtK=MetOpendistRBaseR×BaseR
10 6 7 xmsxmet R∞MetSpdistRBaseR×BaseR∞MetBaseR
11 eqid MetOpendistRBaseR×BaseR=MetOpendistRBaseR×BaseR
12 11 methaus distRBaseR×BaseR∞MetBaseRMetOpendistRBaseR×BaseRHaus
13 5 10 12 3syl RℝExtMetOpendistRBaseR×BaseRHaus
14 9 13 eqeltrd RℝExtKHaus