Metamath Proof Explorer


Theorem rrx0

Description: The zero ("origin") in a generalized real Euclidean space. (Contributed by AV, 11-Feb-2023)

Ref Expression
Hypotheses rrxsca.r H=msup
rrx0.0 0˙=I×0
Assertion rrx0 IV0H=0˙

Proof

Step Hyp Ref Expression
1 rrxsca.r H=msup
2 rrx0.0 0˙=I×0
3 1 rrxval IVH=toCPreHilfldfreeLModI
4 3 fveq2d IV0H=0toCPreHilfldfreeLModI
5 eqid toCPreHilfldfreeLModI=toCPreHilfldfreeLModI
6 eqid BasefldfreeLModI=BasefldfreeLModI
7 eqid 𝑖fldfreeLModI=𝑖fldfreeLModI
8 5 6 7 tcphval toCPreHilfldfreeLModI=fldfreeLModItoNrmGrpxBasefldfreeLModIx𝑖fldfreeLModIx
9 8 a1i IVtoCPreHilfldfreeLModI=fldfreeLModItoNrmGrpxBasefldfreeLModIx𝑖fldfreeLModIx
10 9 fveq2d IV0toCPreHilfldfreeLModI=0fldfreeLModItoNrmGrpxBasefldfreeLModIx𝑖fldfreeLModIx
11 fvexd IVBasefldfreeLModIV
12 11 mptexd IVxBasefldfreeLModIx𝑖fldfreeLModIxV
13 eqid fldfreeLModItoNrmGrpxBasefldfreeLModIx𝑖fldfreeLModIx=fldfreeLModItoNrmGrpxBasefldfreeLModIx𝑖fldfreeLModIx
14 eqid 0fldfreeLModI=0fldfreeLModI
15 13 14 tng0 xBasefldfreeLModIx𝑖fldfreeLModIxV0fldfreeLModI=0fldfreeLModItoNrmGrpxBasefldfreeLModIx𝑖fldfreeLModIx
16 12 15 syl IV0fldfreeLModI=0fldfreeLModItoNrmGrpxBasefldfreeLModIx𝑖fldfreeLModIx
17 refld fldField
18 isfld fldFieldfldDivRingfldCRing
19 drngring fldDivRingfldRing
20 19 adantr fldDivRingfldCRingfldRing
21 18 20 sylbi fldFieldfldRing
22 17 21 ax-mp fldRing
23 eqid fldfreeLModI=fldfreeLModI
24 re0g 0=0fld
25 23 24 frlm0 fldRingIVI×0=0fldfreeLModI
26 22 25 mpan IVI×0=0fldfreeLModI
27 2 26 eqtr2id IV0fldfreeLModI=0˙
28 10 16 27 3eqtr2d IV0toCPreHilfldfreeLModI=0˙
29 4 28 eqtrd IV0H=0˙