Metamath Proof Explorer


Theorem rrx2line

Description: The line passing through the two different points X and Y in a real Euclidean space of dimension 2. (Contributed by AV, 22-Jan-2023) (Proof shortened by AV, 13-Feb-2023)

Ref Expression
Hypotheses rrx2line.i I=12
rrx2line.e E=msup
rrx2line.b P=I
rrx2line.l L=LineME
Assertion rrx2line XPYPXYXLY=pP|tp1=1tX1+tY1p2=1tX2+tY2

Proof

Step Hyp Ref Expression
1 rrx2line.i I=12
2 rrx2line.e E=msup
3 rrx2line.b P=I
4 rrx2line.l L=LineME
5 prfi 12Fin
6 1 5 eqeltri IFin
7 2 3 4 rrxlinec IFinXPYPXYXLY=pP|tiIpi=1tXi+tYi
8 6 7 mpan XPYPXYXLY=pP|tiIpi=1tXi+tYi
9 1 a1i XPYPXYpPtI=12
10 9 raleqdv XPYPXYpPtiIpi=1tXi+tYii12pi=1tXi+tYi
11 1ex 1V
12 2ex 2V
13 fveq2 i=1pi=p1
14 fveq2 i=1Xi=X1
15 14 oveq2d i=11tXi=1tX1
16 fveq2 i=1Yi=Y1
17 16 oveq2d i=1tYi=tY1
18 15 17 oveq12d i=11tXi+tYi=1tX1+tY1
19 13 18 eqeq12d i=1pi=1tXi+tYip1=1tX1+tY1
20 fveq2 i=2pi=p2
21 fveq2 i=2Xi=X2
22 21 oveq2d i=21tXi=1tX2
23 fveq2 i=2Yi=Y2
24 23 oveq2d i=2tYi=tY2
25 22 24 oveq12d i=21tXi+tYi=1tX2+tY2
26 20 25 eqeq12d i=2pi=1tXi+tYip2=1tX2+tY2
27 11 12 19 26 ralpr i12pi=1tXi+tYip1=1tX1+tY1p2=1tX2+tY2
28 10 27 bitrdi XPYPXYpPtiIpi=1tXi+tYip1=1tX1+tY1p2=1tX2+tY2
29 28 rexbidva XPYPXYpPtiIpi=1tXi+tYitp1=1tX1+tY1p2=1tX2+tY2
30 29 rabbidva XPYPXYpP|tiIpi=1tXi+tYi=pP|tp1=1tX1+tY1p2=1tX2+tY2
31 8 30 eqtrd XPYPXYXLY=pP|tp1=1tX1+tY1p2=1tX2+tY2