Description: The line passing through the two different points X and Y in a generalized real Euclidean space of finite dimension, expressed by its coordinates. Remark: This proof is shorter and requires less distinct variables than the proof using rrxlinesc . (Contributed by AV, 13-Feb-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rrxlinesc.e | |
|
rrxlinesc.p | |
||
rrxlinesc.l | |
||
Assertion | rrxlinec | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxlinesc.e | |
|
2 | rrxlinesc.p | |
|
3 | rrxlinesc.l | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | 1 2 3 4 5 | rrxline | |
7 | eqid | |
|
8 | simplll | |
|
9 | 1red | |
|
10 | simpr | |
|
11 | 9 10 | resubcld | |
12 | id | |
|
13 | 12 1 7 | rrxbasefi | |
14 | 2 13 | eqtr4id | |
15 | 14 | eleq2d | |
16 | 15 | biimpcd | |
17 | 16 | 3ad2ant1 | |
18 | 17 | impcom | |
19 | 18 | ad2antrr | |
20 | 14 | eleq2d | |
21 | 20 | biimpcd | |
22 | 21 | 3ad2ant2 | |
23 | 22 | impcom | |
24 | 23 | ad2antrr | |
25 | 14 | adantr | |
26 | 25 | eleq2d | |
27 | 26 | biimpa | |
28 | 27 | adantr | |
29 | 1 7 4 8 11 19 24 28 5 10 | rrxplusgvscavalb | |
30 | 29 | rexbidva | |
31 | 30 | rabbidva | |
32 | 6 31 | eqtrd | |