Metamath Proof Explorer


Theorem rrxlinec

Description: The line passing through the two different points X and Y in a generalized real Euclidean space of finite dimension, expressed by its coordinates. Remark: This proof is shorter and requires less distinct variables than the proof using rrxlinesc . (Contributed by AV, 13-Feb-2023)

Ref Expression
Hypotheses rrxlinesc.e E=msup
rrxlinesc.p P=I
rrxlinesc.l L=LineME
Assertion rrxlinec IFinXPYPXYXLY=pP|tiIpi=1tXi+tYi

Proof

Step Hyp Ref Expression
1 rrxlinesc.e E=msup
2 rrxlinesc.p P=I
3 rrxlinesc.l L=LineME
4 eqid E=E
5 eqid +E=+E
6 1 2 3 4 5 rrxline IFinXPYPXYXLY=pP|tp=1tEX+EtEY
7 eqid BaseE=BaseE
8 simplll IFinXPYPXYpPtIFin
9 1red IFinXPYPXYpPt1
10 simpr IFinXPYPXYpPtt
11 9 10 resubcld IFinXPYPXYpPt1t
12 id IFinIFin
13 12 1 7 rrxbasefi IFinBaseE=I
14 2 13 eqtr4id IFinP=BaseE
15 14 eleq2d IFinXPXBaseE
16 15 biimpcd XPIFinXBaseE
17 16 3ad2ant1 XPYPXYIFinXBaseE
18 17 impcom IFinXPYPXYXBaseE
19 18 ad2antrr IFinXPYPXYpPtXBaseE
20 14 eleq2d IFinYPYBaseE
21 20 biimpcd YPIFinYBaseE
22 21 3ad2ant2 XPYPXYIFinYBaseE
23 22 impcom IFinXPYPXYYBaseE
24 23 ad2antrr IFinXPYPXYpPtYBaseE
25 14 adantr IFinXPYPXYP=BaseE
26 25 eleq2d IFinXPYPXYpPpBaseE
27 26 biimpa IFinXPYPXYpPpBaseE
28 27 adantr IFinXPYPXYpPtpBaseE
29 1 7 4 8 11 19 24 28 5 10 rrxplusgvscavalb IFinXPYPXYpPtp=1tEX+EtEYiIpi=1tXi+tYi
30 29 rexbidva IFinXPYPXYpPtp=1tEX+EtEYtiIpi=1tXi+tYi
31 30 rabbidva IFinXPYPXYpP|tp=1tEX+EtEY=pP|tiIpi=1tXi+tYi
32 6 31 eqtrd IFinXPYPXYXLY=pP|tiIpi=1tXi+tYi