Metamath Proof Explorer


Theorem safesnsupfiss

Description: If B is a finite subset of ordered class A , we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024)

Ref Expression
Hypotheses safesnsupfiss.small φ O = O = 1 𝑜
safesnsupfiss.finite φ B Fin
safesnsupfiss.subset φ B A
safesnsupfiss.ordered φ R Or A
Assertion safesnsupfiss φ if O B sup B A R B B

Proof

Step Hyp Ref Expression
1 safesnsupfiss.small φ O = O = 1 𝑜
2 safesnsupfiss.finite φ B Fin
3 safesnsupfiss.subset φ B A
4 safesnsupfiss.ordered φ R Or A
5 elif x if O B sup B A R B O B x sup B A R ¬ O B x B
6 elsni x sup B A R x = sup B A R
7 simpr φ O B x = sup B A R x = sup B A R
8 4 adantr φ O B R Or A
9 2 adantr φ O B B Fin
10 simpr φ O B O B
11 0elon On
12 eleq1 O = O On On
13 11 12 mpbiri O = O On
14 1on 1 𝑜 On
15 eleq1 O = 1 𝑜 O On 1 𝑜 On
16 14 15 mpbiri O = 1 𝑜 O On
17 13 16 jaoi O = O = 1 𝑜 O On
18 1 17 syl φ O On
19 18 adantr φ O B O On
20 10 19 sdomne0d φ O B B
21 3 adantr φ O B B A
22 fisupcl R Or A B Fin B B A sup B A R B
23 8 9 20 21 22 syl13anc φ O B sup B A R B
24 23 adantr φ O B x = sup B A R sup B A R B
25 7 24 eqeltrd φ O B x = sup B A R x B
26 25 ex φ O B x = sup B A R x B
27 6 26 syl5 φ O B x sup B A R x B
28 27 expimpd φ O B x sup B A R x B
29 simpr ¬ O B x B x B
30 29 a1i φ ¬ O B x B x B
31 28 30 jaod φ O B x sup B A R ¬ O B x B x B
32 5 31 biimtrid φ x if O B sup B A R B x B
33 32 ssrdv φ if O B sup B A R B B