Description: If B is a finite subset of ordered class A , we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | safesnsupfiss.small | |
|
safesnsupfiss.finite | |
||
safesnsupfiss.subset | |
||
safesnsupfiss.ordered | |
||
Assertion | safesnsupfiss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | safesnsupfiss.small | |
|
2 | safesnsupfiss.finite | |
|
3 | safesnsupfiss.subset | |
|
4 | safesnsupfiss.ordered | |
|
5 | elif | |
|
6 | elsni | |
|
7 | simpr | |
|
8 | 4 | adantr | |
9 | 2 | adantr | |
10 | simpr | |
|
11 | 0elon | |
|
12 | eleq1 | |
|
13 | 11 12 | mpbiri | |
14 | 1on | |
|
15 | eleq1 | |
|
16 | 14 15 | mpbiri | |
17 | 13 16 | jaoi | |
18 | 1 17 | syl | |
19 | 18 | adantr | |
20 | 10 19 | sdomne0d | |
21 | 3 | adantr | |
22 | fisupcl | |
|
23 | 8 9 20 21 22 | syl13anc | |
24 | 23 | adantr | |
25 | 7 24 | eqeltrd | |
26 | 25 | ex | |
27 | 6 26 | syl5 | |
28 | 27 | expimpd | |
29 | simpr | |
|
30 | 29 | a1i | |
31 | 28 30 | jaod | |
32 | 5 31 | biimtrid | |
33 | 32 | ssrdv | |