Metamath Proof Explorer


Theorem safesnsupfiss

Description: If B is a finite subset of ordered class A , we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024)

Ref Expression
Hypotheses safesnsupfiss.small φO=O=1𝑜
safesnsupfiss.finite φBFin
safesnsupfiss.subset φBA
safesnsupfiss.ordered φROrA
Assertion safesnsupfiss φifOBsupBARBB

Proof

Step Hyp Ref Expression
1 safesnsupfiss.small φO=O=1𝑜
2 safesnsupfiss.finite φBFin
3 safesnsupfiss.subset φBA
4 safesnsupfiss.ordered φROrA
5 elif xifOBsupBARBOBxsupBAR¬OBxB
6 elsni xsupBARx=supBAR
7 simpr φOBx=supBARx=supBAR
8 4 adantr φOBROrA
9 2 adantr φOBBFin
10 simpr φOBOB
11 0elon On
12 eleq1 O=OOnOn
13 11 12 mpbiri O=OOn
14 1on 1𝑜On
15 eleq1 O=1𝑜OOn1𝑜On
16 14 15 mpbiri O=1𝑜OOn
17 13 16 jaoi O=O=1𝑜OOn
18 1 17 syl φOOn
19 18 adantr φOBOOn
20 10 19 sdomne0d φOBB
21 3 adantr φOBBA
22 fisupcl ROrABFinBBAsupBARB
23 8 9 20 21 22 syl13anc φOBsupBARB
24 23 adantr φOBx=supBARsupBARB
25 7 24 eqeltrd φOBx=supBARxB
26 25 ex φOBx=supBARxB
27 6 26 syl5 φOBxsupBARxB
28 27 expimpd φOBxsupBARxB
29 simpr ¬OBxBxB
30 29 a1i φ¬OBxBxB
31 28 30 jaod φOBxsupBAR¬OBxBxB
32 5 31 biimtrid φxifOBsupBARBxB
33 32 ssrdv φifOBsupBARBB