Description: Lemma for sbthfi . (Contributed by BTernaryTau, 4-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sbthfilem.1 | |
|
sbthfilem.2 | |
||
sbthfilem.3 | |
||
sbthfilem.4 | |
||
Assertion | sbthfilem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbthfilem.1 | |
|
2 | sbthfilem.2 | |
|
3 | sbthfilem.3 | |
|
4 | sbthfilem.4 | |
|
5 | 19.42vv | |
|
6 | 3anass | |
|
7 | 6 | 2exbii | |
8 | 3anass | |
|
9 | 4 | brdom | |
10 | 1 | brdom | |
11 | 9 10 | anbi12i | |
12 | exdistrv | |
|
13 | 11 12 | bitr4i | |
14 | 13 | anbi2i | |
15 | 8 14 | bitri | |
16 | 5 7 15 | 3bitr4ri | |
17 | f1fn | |
|
18 | vex | |
|
19 | 18 | resex | |
20 | fnfi | |
|
21 | cnvfi | |
|
22 | resexg | |
|
23 | 20 21 22 | 3syl | |
24 | unexg | |
|
25 | 19 23 24 | sylancr | |
26 | 3 25 | eqeltrid | |
27 | 26 | ancoms | |
28 | 17 27 | sylan2 | |
29 | 28 | 3adant2 | |
30 | 1 2 3 | sbthlem9 | |
31 | 30 | 3adant1 | |
32 | f1oen3g | |
|
33 | 29 31 32 | syl2anc | |
34 | 33 | exlimivv | |
35 | 16 34 | sylbi | |