Metamath Proof Explorer


Theorem sbthfilem

Description: Lemma for sbthfi . (Contributed by BTernaryTau, 4-Nov-2024)

Ref Expression
Hypotheses sbthfilem.1 AV
sbthfilem.2 D=x|xAgBfxAx
sbthfilem.3 H=fDg-1AD
sbthfilem.4 BV
Assertion sbthfilem BFinABBAAB

Proof

Step Hyp Ref Expression
1 sbthfilem.1 AV
2 sbthfilem.2 D=x|xAgBfxAx
3 sbthfilem.3 H=fDg-1AD
4 sbthfilem.4 BV
5 19.42vv fgBFinf:A1-1Bg:B1-1ABFinfgf:A1-1Bg:B1-1A
6 3anass BFinf:A1-1Bg:B1-1ABFinf:A1-1Bg:B1-1A
7 6 2exbii fgBFinf:A1-1Bg:B1-1AfgBFinf:A1-1Bg:B1-1A
8 3anass BFinABBABFinABBA
9 4 brdom ABff:A1-1B
10 1 brdom BAgg:B1-1A
11 9 10 anbi12i ABBAff:A1-1Bgg:B1-1A
12 exdistrv fgf:A1-1Bg:B1-1Aff:A1-1Bgg:B1-1A
13 11 12 bitr4i ABBAfgf:A1-1Bg:B1-1A
14 13 anbi2i BFinABBABFinfgf:A1-1Bg:B1-1A
15 8 14 bitri BFinABBABFinfgf:A1-1Bg:B1-1A
16 5 7 15 3bitr4ri BFinABBAfgBFinf:A1-1Bg:B1-1A
17 f1fn g:B1-1AgFnB
18 vex fV
19 18 resex fDV
20 fnfi gFnBBFingFin
21 cnvfi gFing-1Fin
22 resexg g-1Fing-1ADV
23 20 21 22 3syl gFnBBFing-1ADV
24 unexg fDVg-1ADVfDg-1ADV
25 19 23 24 sylancr gFnBBFinfDg-1ADV
26 3 25 eqeltrid gFnBBFinHV
27 26 ancoms BFingFnBHV
28 17 27 sylan2 BFing:B1-1AHV
29 28 3adant2 BFinf:A1-1Bg:B1-1AHV
30 1 2 3 sbthlem9 f:A1-1Bg:B1-1AH:A1-1 ontoB
31 30 3adant1 BFinf:A1-1Bg:B1-1AH:A1-1 ontoB
32 f1oen3g HVH:A1-1 ontoBAB
33 29 31 32 syl2anc BFinf:A1-1Bg:B1-1AAB
34 33 exlimivv fgBFinf:A1-1Bg:B1-1AAB
35 16 34 sylbi BFinABBAAB