Metamath Proof Explorer


Theorem scottabf

Description: Value of the Scott operation at a class abstraction. Variant of scottab with a nonfreeness hypothesis instead of a disjoint variable condition. (Contributed by Rohan Ridenour, 14-Aug-2023)

Ref Expression
Hypotheses scottabf.1 x ψ
scottabf.2 x = y φ ψ
Assertion scottabf Scott x | φ = x | φ y ψ rank x rank y

Proof

Step Hyp Ref Expression
1 scottabf.1 x ψ
2 scottabf.2 x = y φ ψ
3 df-scott Scott x | φ = z x | φ | w x | φ rank z rank w
4 df-rab z x | φ | w x | φ rank z rank w = z | z x | φ w x | φ rank z rank w
5 abeq1 z | z x | φ w x | φ rank z rank w = x | φ y ψ rank x rank y z z x | φ w x | φ rank z rank w z x | φ y ψ rank x rank y
6 nfsab1 x z x | φ
7 nfab1 _ x x | φ
8 nfv x rank z rank w
9 7 8 nfralw x w x | φ rank z rank w
10 6 9 nfan x z x | φ w x | φ rank z rank w
11 vex z V
12 abid x x | φ φ
13 eleq1w x = z x x | φ z x | φ
14 12 13 bitr3id x = z φ z x | φ
15 df-clab y x | φ y x φ
16 1 2 sbiev y x φ ψ
17 15 16 bitr2i ψ y x | φ
18 eleq1w y = w y x | φ w x | φ
19 17 18 syl5bb y = w ψ w x | φ
20 19 adantl x = z y = w ψ w x | φ
21 simpl x = z y = w x = z
22 21 fveq2d x = z y = w rank x = rank z
23 simpr x = z y = w y = w
24 23 fveq2d x = z y = w rank y = rank w
25 22 24 sseq12d x = z y = w rank x rank y rank z rank w
26 20 25 imbi12d x = z y = w ψ rank x rank y w x | φ rank z rank w
27 26 cbvaldvaw x = z y ψ rank x rank y w w x | φ rank z rank w
28 df-ral w x | φ rank z rank w w w x | φ rank z rank w
29 27 28 bitr4di x = z y ψ rank x rank y w x | φ rank z rank w
30 14 29 anbi12d x = z φ y ψ rank x rank y z x | φ w x | φ rank z rank w
31 10 11 30 elabf z x | φ y ψ rank x rank y z x | φ w x | φ rank z rank w
32 31 bicomi z x | φ w x | φ rank z rank w z x | φ y ψ rank x rank y
33 5 32 mpgbir z | z x | φ w x | φ rank z rank w = x | φ y ψ rank x rank y
34 3 4 33 3eqtri Scott x | φ = x | φ y ψ rank x rank y