Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Surreal numbers - cuts and options
scutfo
Next ⟩
sltn0
Metamath Proof Explorer
Ascii
Unicode
Theorem
scutfo
Description:
The surreal cut function is onto.
(Contributed by
Scott Fenton
, 23-Aug-2024)
Ref
Expression
Assertion
scutfo
⊢
|
s
:
≪
s
⟶
onto
No
Proof
Step
Hyp
Ref
Expression
1
scutf
⊢
|
s
:
≪
s
⟶
No
2
lltropt
⊢
x
∈
No
→
L
⁡
x
≪
s
R
⁡
x
3
df-br
⊢
L
⁡
x
≪
s
R
⁡
x
↔
L
⁡
x
R
⁡
x
∈
≪
s
4
2
3
sylib
⊢
x
∈
No
→
L
⁡
x
R
⁡
x
∈
≪
s
5
lrcut
⊢
x
∈
No
→
L
⁡
x
|
s
R
⁡
x
=
x
6
5
eqcomd
⊢
x
∈
No
→
x
=
L
⁡
x
|
s
R
⁡
x
7
fveq2
⊢
y
=
L
⁡
x
R
⁡
x
→
|
s
⁡
y
=
|
s
⁡
L
⁡
x
R
⁡
x
8
df-ov
⊢
L
⁡
x
|
s
R
⁡
x
=
|
s
⁡
L
⁡
x
R
⁡
x
9
7
8
eqtr4di
⊢
y
=
L
⁡
x
R
⁡
x
→
|
s
⁡
y
=
L
⁡
x
|
s
R
⁡
x
10
9
rspceeqv
⊢
L
⁡
x
R
⁡
x
∈
≪
s
∧
x
=
L
⁡
x
|
s
R
⁡
x
→
∃
y
∈
≪
s
x
=
|
s
⁡
y
11
4
6
10
syl2anc
⊢
x
∈
No
→
∃
y
∈
≪
s
x
=
|
s
⁡
y
12
11
rgen
⊢
∀
x
∈
No
∃
y
∈
≪
s
x
=
|
s
⁡
y
13
dffo3
⊢
|
s
:
≪
s
⟶
onto
No
↔
|
s
:
≪
s
⟶
No
∧
∀
x
∈
No
∃
y
∈
≪
s
x
=
|
s
⁡
y
14
1
12
13
mpbir2an
⊢
|
s
:
≪
s
⟶
onto
No