Metamath Proof Explorer


Theorem selvadd

Description: The "variable selection" function is additive. (Contributed by SN, 7-Feb-2025)

Ref Expression
Hypotheses selvadd.p P=ImPolyR
selvadd.b B=BaseP
selvadd.1 +˙=+P
selvadd.u U=IJmPolyR
selvadd.t T=JmPolyU
selvadd.2 ˙=+T
selvadd.i φIV
selvadd.r φRCRing
selvadd.j φJI
selvadd.f φFB
selvadd.g φGB
Assertion selvadd φIselectVarsRJF+˙G=IselectVarsRJF˙IselectVarsRJG

Proof

Step Hyp Ref Expression
1 selvadd.p P=ImPolyR
2 selvadd.b B=BaseP
3 selvadd.1 +˙=+P
4 selvadd.u U=IJmPolyR
5 selvadd.t T=JmPolyU
6 selvadd.2 ˙=+T
7 selvadd.i φIV
8 selvadd.r φRCRing
9 selvadd.j φJI
10 selvadd.f φFB
11 selvadd.g φGB
12 eqid ImPolyT=ImPolyT
13 eqid BaseImPolyT=BaseImPolyT
14 eqid +ImPolyT=+ImPolyT
15 eqid algScT=algScT
16 eqid algScTalgScU=algScTalgScU
17 7 difexd φIJV
18 7 9 ssexd φJV
19 4 5 15 16 17 18 8 selvcllem2 φalgScTalgScURRingHomT
20 rhmghm algScTalgScURRingHomTalgScTalgScURGrpHomT
21 ghmmhm algScTalgScURGrpHomTalgScTalgScURMndHomT
22 19 20 21 3syl φalgScTalgScURMndHomT
23 1 12 2 13 3 14 7 22 10 11 mhmcoaddmpl φalgScTalgScUF+˙G=algScTalgScUF+ImPolyTalgScTalgScUG
24 23 fveq2d φIevalTalgScTalgScUF+˙G=IevalTalgScTalgScUF+ImPolyTalgScTalgScUG
25 24 fveq1d φIevalTalgScTalgScUF+˙GxIifxJJmVarUxalgScTIJmVarRx=IevalTalgScTalgScUF+ImPolyTalgScTalgScUGxIifxJJmVarUxalgScTIJmVarRx
26 eqid IevalT=IevalT
27 eqid BaseT=BaseT
28 4 17 8 mplcrngd φUCRing
29 5 18 28 mplcrngd φTCRing
30 eqid xIifxJJmVarUxalgScTIJmVarRx=xIifxJJmVarUxalgScTIJmVarRx
31 4 5 15 27 30 7 8 9 selvcllem5 φxIifxJJmVarUxalgScTIJmVarRxBaseTI
32 1 12 2 13 7 22 10 mhmcompl φalgScTalgScUFBaseImPolyT
33 eqidd φIevalTalgScTalgScUFxIifxJJmVarUxalgScTIJmVarRx=IevalTalgScTalgScUFxIifxJJmVarUxalgScTIJmVarRx
34 32 33 jca φalgScTalgScUFBaseImPolyTIevalTalgScTalgScUFxIifxJJmVarUxalgScTIJmVarRx=IevalTalgScTalgScUFxIifxJJmVarUxalgScTIJmVarRx
35 1 12 2 13 7 22 11 mhmcompl φalgScTalgScUGBaseImPolyT
36 eqidd φIevalTalgScTalgScUGxIifxJJmVarUxalgScTIJmVarRx=IevalTalgScTalgScUGxIifxJJmVarUxalgScTIJmVarRx
37 35 36 jca φalgScTalgScUGBaseImPolyTIevalTalgScTalgScUGxIifxJJmVarUxalgScTIJmVarRx=IevalTalgScTalgScUGxIifxJJmVarUxalgScTIJmVarRx
38 26 12 27 13 14 6 7 29 31 34 37 evladdval φalgScTalgScUF+ImPolyTalgScTalgScUGBaseImPolyTIevalTalgScTalgScUF+ImPolyTalgScTalgScUGxIifxJJmVarUxalgScTIJmVarRx=IevalTalgScTalgScUFxIifxJJmVarUxalgScTIJmVarRx˙IevalTalgScTalgScUGxIifxJJmVarUxalgScTIJmVarRx
39 38 simprd φIevalTalgScTalgScUF+ImPolyTalgScTalgScUGxIifxJJmVarUxalgScTIJmVarRx=IevalTalgScTalgScUFxIifxJJmVarUxalgScTIJmVarRx˙IevalTalgScTalgScUGxIifxJJmVarUxalgScTIJmVarRx
40 25 39 eqtrd φIevalTalgScTalgScUF+˙GxIifxJJmVarUxalgScTIJmVarRx=IevalTalgScTalgScUFxIifxJJmVarUxalgScTIJmVarRx˙IevalTalgScTalgScUGxIifxJJmVarUxalgScTIJmVarRx
41 1 7 8 mplcrngd φPCRing
42 41 crnggrpd φPGrp
43 2 3 42 10 11 grpcld φF+˙GB
44 1 2 4 5 15 16 7 8 9 43 selvval2 φIselectVarsRJF+˙G=IevalTalgScTalgScUF+˙GxIifxJJmVarUxalgScTIJmVarRx
45 1 2 4 5 15 16 7 8 9 10 selvval2 φIselectVarsRJF=IevalTalgScTalgScUFxIifxJJmVarUxalgScTIJmVarRx
46 1 2 4 5 15 16 7 8 9 11 selvval2 φIselectVarsRJG=IevalTalgScTalgScUGxIifxJJmVarUxalgScTIJmVarRx
47 45 46 oveq12d φIselectVarsRJF˙IselectVarsRJG=IevalTalgScTalgScUFxIifxJJmVarUxalgScTIJmVarRx˙IevalTalgScTalgScUGxIifxJJmVarUxalgScTIJmVarRx
48 40 44 47 3eqtr4d φIselectVarsRJF+˙G=IselectVarsRJF˙IselectVarsRJG