Description: The "variable selection" function is multiplicative. (Contributed by SN, 18-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | selvmul.p | |
|
selvmul.b | |
||
selvmul.1 | |
||
selvmul.u | |
||
selvmul.t | |
||
selvmul.2 | |
||
selvmul.i | |
||
selvmul.r | |
||
selvmul.j | |
||
selvmul.f | |
||
selvmul.g | |
||
Assertion | selvmul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | selvmul.p | |
|
2 | selvmul.b | |
|
3 | selvmul.1 | |
|
4 | selvmul.u | |
|
5 | selvmul.t | |
|
6 | selvmul.2 | |
|
7 | selvmul.i | |
|
8 | selvmul.r | |
|
9 | selvmul.j | |
|
10 | selvmul.f | |
|
11 | selvmul.g | |
|
12 | eqid | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | eqid | |
|
16 | eqid | |
|
17 | 7 | difexd | |
18 | 7 9 | ssexd | |
19 | 4 5 15 16 17 18 8 | selvcllem2 | |
20 | 1 12 2 13 3 14 7 19 10 11 | rhmcomulmpl | |
21 | 20 | fveq2d | |
22 | 21 | fveq1d | |
23 | eqid | |
|
24 | eqid | |
|
25 | 4 17 8 | mplcrngd | |
26 | 5 18 25 | mplcrngd | |
27 | eqid | |
|
28 | 4 5 15 24 27 7 8 9 | selvcllem5 | |
29 | rhmghm | |
|
30 | ghmmhm | |
|
31 | 19 29 30 | 3syl | |
32 | 1 12 2 13 7 31 10 | mhmcompl | |
33 | eqidd | |
|
34 | 32 33 | jca | |
35 | 1 12 2 13 7 31 11 | mhmcompl | |
36 | eqidd | |
|
37 | 35 36 | jca | |
38 | 23 12 24 13 14 6 7 26 28 34 37 | evlmulval | |
39 | 38 | simprd | |
40 | 22 39 | eqtrd | |
41 | 1 7 8 | mplcrngd | |
42 | 41 | crngringd | |
43 | 2 3 42 10 11 | ringcld | |
44 | 1 2 4 5 15 16 7 8 9 43 | selvval2 | |
45 | 1 2 4 5 15 16 7 8 9 10 | selvval2 | |
46 | 1 2 4 5 15 16 7 8 9 11 | selvval2 | |
47 | 45 46 | oveq12d | |
48 | 40 44 47 | 3eqtr4d | |