Metamath Proof Explorer


Theorem selvmul

Description: The "variable selection" function is multiplicative. (Contributed by SN, 18-Feb-2025)

Ref Expression
Hypotheses selvmul.p P=ImPolyR
selvmul.b B=BaseP
selvmul.1 ·˙=P
selvmul.u U=IJmPolyR
selvmul.t T=JmPolyU
selvmul.2 ˙=T
selvmul.i φIV
selvmul.r φRCRing
selvmul.j φJI
selvmul.f φFB
selvmul.g φGB
Assertion selvmul φIselectVarsRJF·˙G=IselectVarsRJF˙IselectVarsRJG

Proof

Step Hyp Ref Expression
1 selvmul.p P=ImPolyR
2 selvmul.b B=BaseP
3 selvmul.1 ·˙=P
4 selvmul.u U=IJmPolyR
5 selvmul.t T=JmPolyU
6 selvmul.2 ˙=T
7 selvmul.i φIV
8 selvmul.r φRCRing
9 selvmul.j φJI
10 selvmul.f φFB
11 selvmul.g φGB
12 eqid ImPolyT=ImPolyT
13 eqid BaseImPolyT=BaseImPolyT
14 eqid ImPolyT=ImPolyT
15 eqid algScT=algScT
16 eqid algScTalgScU=algScTalgScU
17 7 difexd φIJV
18 7 9 ssexd φJV
19 4 5 15 16 17 18 8 selvcllem2 φalgScTalgScURRingHomT
20 1 12 2 13 3 14 7 19 10 11 rhmcomulmpl φalgScTalgScUF·˙G=algScTalgScUFImPolyTalgScTalgScUG
21 20 fveq2d φIevalTalgScTalgScUF·˙G=IevalTalgScTalgScUFImPolyTalgScTalgScUG
22 21 fveq1d φIevalTalgScTalgScUF·˙GxIifxJJmVarUxalgScTIJmVarRx=IevalTalgScTalgScUFImPolyTalgScTalgScUGxIifxJJmVarUxalgScTIJmVarRx
23 eqid IevalT=IevalT
24 eqid BaseT=BaseT
25 4 17 8 mplcrngd φUCRing
26 5 18 25 mplcrngd φTCRing
27 eqid xIifxJJmVarUxalgScTIJmVarRx=xIifxJJmVarUxalgScTIJmVarRx
28 4 5 15 24 27 7 8 9 selvcllem5 φxIifxJJmVarUxalgScTIJmVarRxBaseTI
29 rhmghm algScTalgScURRingHomTalgScTalgScURGrpHomT
30 ghmmhm algScTalgScURGrpHomTalgScTalgScURMndHomT
31 19 29 30 3syl φalgScTalgScURMndHomT
32 1 12 2 13 7 31 10 mhmcompl φalgScTalgScUFBaseImPolyT
33 eqidd φIevalTalgScTalgScUFxIifxJJmVarUxalgScTIJmVarRx=IevalTalgScTalgScUFxIifxJJmVarUxalgScTIJmVarRx
34 32 33 jca φalgScTalgScUFBaseImPolyTIevalTalgScTalgScUFxIifxJJmVarUxalgScTIJmVarRx=IevalTalgScTalgScUFxIifxJJmVarUxalgScTIJmVarRx
35 1 12 2 13 7 31 11 mhmcompl φalgScTalgScUGBaseImPolyT
36 eqidd φIevalTalgScTalgScUGxIifxJJmVarUxalgScTIJmVarRx=IevalTalgScTalgScUGxIifxJJmVarUxalgScTIJmVarRx
37 35 36 jca φalgScTalgScUGBaseImPolyTIevalTalgScTalgScUGxIifxJJmVarUxalgScTIJmVarRx=IevalTalgScTalgScUGxIifxJJmVarUxalgScTIJmVarRx
38 23 12 24 13 14 6 7 26 28 34 37 evlmulval φalgScTalgScUFImPolyTalgScTalgScUGBaseImPolyTIevalTalgScTalgScUFImPolyTalgScTalgScUGxIifxJJmVarUxalgScTIJmVarRx=IevalTalgScTalgScUFxIifxJJmVarUxalgScTIJmVarRx˙IevalTalgScTalgScUGxIifxJJmVarUxalgScTIJmVarRx
39 38 simprd φIevalTalgScTalgScUFImPolyTalgScTalgScUGxIifxJJmVarUxalgScTIJmVarRx=IevalTalgScTalgScUFxIifxJJmVarUxalgScTIJmVarRx˙IevalTalgScTalgScUGxIifxJJmVarUxalgScTIJmVarRx
40 22 39 eqtrd φIevalTalgScTalgScUF·˙GxIifxJJmVarUxalgScTIJmVarRx=IevalTalgScTalgScUFxIifxJJmVarUxalgScTIJmVarRx˙IevalTalgScTalgScUGxIifxJJmVarUxalgScTIJmVarRx
41 1 7 8 mplcrngd φPCRing
42 41 crngringd φPRing
43 2 3 42 10 11 ringcld φF·˙GB
44 1 2 4 5 15 16 7 8 9 43 selvval2 φIselectVarsRJF·˙G=IevalTalgScTalgScUF·˙GxIifxJJmVarUxalgScTIJmVarRx
45 1 2 4 5 15 16 7 8 9 10 selvval2 φIselectVarsRJF=IevalTalgScTalgScUFxIifxJJmVarUxalgScTIJmVarRx
46 1 2 4 5 15 16 7 8 9 11 selvval2 φIselectVarsRJG=IevalTalgScTalgScUGxIifxJJmVarUxalgScTIJmVarRx
47 45 46 oveq12d φIselectVarsRJF˙IselectVarsRJG=IevalTalgScTalgScUFxIifxJJmVarUxalgScTIJmVarRx˙IevalTalgScTalgScUGxIifxJJmVarUxalgScTIJmVarRx
48 40 44 47 3eqtr4d φIselectVarsRJF·˙G=IselectVarsRJF˙IselectVarsRJG