Description: Lemma for setccat . (Contributed by Mario Carneiro, 3-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | setccat.c | |
|
Assertion | setccatid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setccat.c | |
|
2 | id | |
|
3 | 1 2 | setcbas | |
4 | eqidd | |
|
5 | eqidd | |
|
6 | 1 | fvexi | |
7 | 6 | a1i | |
8 | biid | |
|
9 | f1oi | |
|
10 | f1of | |
|
11 | 9 10 | mp1i | |
12 | simpl | |
|
13 | eqid | |
|
14 | simpr | |
|
15 | 1 12 13 14 14 | elsetchom | |
16 | 11 15 | mpbird | |
17 | simpl | |
|
18 | eqid | |
|
19 | simpr1l | |
|
20 | simpr1r | |
|
21 | simpr31 | |
|
22 | 1 17 13 19 20 | elsetchom | |
23 | 21 22 | mpbid | |
24 | 9 10 | mp1i | |
25 | 1 17 18 19 20 20 23 24 | setcco | |
26 | fcoi2 | |
|
27 | 23 26 | syl | |
28 | 25 27 | eqtrd | |
29 | simpr2l | |
|
30 | simpr32 | |
|
31 | 1 17 13 20 29 | elsetchom | |
32 | 30 31 | mpbid | |
33 | 1 17 18 20 20 29 24 32 | setcco | |
34 | fcoi1 | |
|
35 | 32 34 | syl | |
36 | 33 35 | eqtrd | |
37 | 1 17 18 19 20 29 23 32 | setcco | |
38 | fco | |
|
39 | 32 23 38 | syl2anc | |
40 | 1 17 13 19 29 | elsetchom | |
41 | 39 40 | mpbird | |
42 | 37 41 | eqeltrd | |
43 | coass | |
|
44 | simpr2r | |
|
45 | simpr33 | |
|
46 | 1 17 13 29 44 | elsetchom | |
47 | 45 46 | mpbid | |
48 | fco | |
|
49 | 47 32 48 | syl2anc | |
50 | 1 17 18 19 20 44 23 49 | setcco | |
51 | 1 17 18 19 29 44 39 47 | setcco | |
52 | 43 50 51 | 3eqtr4a | |
53 | 1 17 18 20 29 44 32 47 | setcco | |
54 | 53 | oveq1d | |
55 | 37 | oveq2d | |
56 | 52 54 55 | 3eqtr4d | |
57 | 3 4 5 7 8 16 28 36 42 56 | iscatd2 | |