Metamath Proof Explorer


Theorem setccatid

Description: Lemma for setccat . (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypothesis setccat.c C=SetCatU
Assertion setccatid UVCCatIdC=xUIx

Proof

Step Hyp Ref Expression
1 setccat.c C=SetCatU
2 id UVUV
3 1 2 setcbas UVU=BaseC
4 eqidd UVHomC=HomC
5 eqidd UVcompC=compC
6 1 fvexi CV
7 6 a1i UVCV
8 biid wUxUyUzUfwHomCxgxHomCyhyHomCzwUxUyUzUfwHomCxgxHomCyhyHomCz
9 f1oi Ix:x1-1 ontox
10 f1of Ix:x1-1 ontoxIx:xx
11 9 10 mp1i UVxUIx:xx
12 simpl UVxUUV
13 eqid HomC=HomC
14 simpr UVxUxU
15 1 12 13 14 14 elsetchom UVxUIxxHomCxIx:xx
16 11 15 mpbird UVxUIxxHomCx
17 simpl UVwUxUyUzUfwHomCxgxHomCyhyHomCzUV
18 eqid compC=compC
19 simpr1l UVwUxUyUzUfwHomCxgxHomCyhyHomCzwU
20 simpr1r UVwUxUyUzUfwHomCxgxHomCyhyHomCzxU
21 simpr31 UVwUxUyUzUfwHomCxgxHomCyhyHomCzfwHomCx
22 1 17 13 19 20 elsetchom UVwUxUyUzUfwHomCxgxHomCyhyHomCzfwHomCxf:wx
23 21 22 mpbid UVwUxUyUzUfwHomCxgxHomCyhyHomCzf:wx
24 9 10 mp1i UVwUxUyUzUfwHomCxgxHomCyhyHomCzIx:xx
25 1 17 18 19 20 20 23 24 setcco UVwUxUyUzUfwHomCxgxHomCyhyHomCzIxwxcompCxf=Ixf
26 fcoi2 f:wxIxf=f
27 23 26 syl UVwUxUyUzUfwHomCxgxHomCyhyHomCzIxf=f
28 25 27 eqtrd UVwUxUyUzUfwHomCxgxHomCyhyHomCzIxwxcompCxf=f
29 simpr2l UVwUxUyUzUfwHomCxgxHomCyhyHomCzyU
30 simpr32 UVwUxUyUzUfwHomCxgxHomCyhyHomCzgxHomCy
31 1 17 13 20 29 elsetchom UVwUxUyUzUfwHomCxgxHomCyhyHomCzgxHomCyg:xy
32 30 31 mpbid UVwUxUyUzUfwHomCxgxHomCyhyHomCzg:xy
33 1 17 18 20 20 29 24 32 setcco UVwUxUyUzUfwHomCxgxHomCyhyHomCzgxxcompCyIx=gIx
34 fcoi1 g:xygIx=g
35 32 34 syl UVwUxUyUzUfwHomCxgxHomCyhyHomCzgIx=g
36 33 35 eqtrd UVwUxUyUzUfwHomCxgxHomCyhyHomCzgxxcompCyIx=g
37 1 17 18 19 20 29 23 32 setcco UVwUxUyUzUfwHomCxgxHomCyhyHomCzgwxcompCyf=gf
38 fco g:xyf:wxgf:wy
39 32 23 38 syl2anc UVwUxUyUzUfwHomCxgxHomCyhyHomCzgf:wy
40 1 17 13 19 29 elsetchom UVwUxUyUzUfwHomCxgxHomCyhyHomCzgfwHomCygf:wy
41 39 40 mpbird UVwUxUyUzUfwHomCxgxHomCyhyHomCzgfwHomCy
42 37 41 eqeltrd UVwUxUyUzUfwHomCxgxHomCyhyHomCzgwxcompCyfwHomCy
43 coass hgf=hgf
44 simpr2r UVwUxUyUzUfwHomCxgxHomCyhyHomCzzU
45 simpr33 UVwUxUyUzUfwHomCxgxHomCyhyHomCzhyHomCz
46 1 17 13 29 44 elsetchom UVwUxUyUzUfwHomCxgxHomCyhyHomCzhyHomCzh:yz
47 45 46 mpbid UVwUxUyUzUfwHomCxgxHomCyhyHomCzh:yz
48 fco h:yzg:xyhg:xz
49 47 32 48 syl2anc UVwUxUyUzUfwHomCxgxHomCyhyHomCzhg:xz
50 1 17 18 19 20 44 23 49 setcco UVwUxUyUzUfwHomCxgxHomCyhyHomCzhgwxcompCzf=hgf
51 1 17 18 19 29 44 39 47 setcco UVwUxUyUzUfwHomCxgxHomCyhyHomCzhwycompCzgf=hgf
52 43 50 51 3eqtr4a UVwUxUyUzUfwHomCxgxHomCyhyHomCzhgwxcompCzf=hwycompCzgf
53 1 17 18 20 29 44 32 47 setcco UVwUxUyUzUfwHomCxgxHomCyhyHomCzhxycompCzg=hg
54 53 oveq1d UVwUxUyUzUfwHomCxgxHomCyhyHomCzhxycompCzgwxcompCzf=hgwxcompCzf
55 37 oveq2d UVwUxUyUzUfwHomCxgxHomCyhyHomCzhwycompCzgwxcompCyf=hwycompCzgf
56 52 54 55 3eqtr4d UVwUxUyUzUfwHomCxgxHomCyhyHomCzhxycompCzgwxcompCzf=hwycompCzgwxcompCyf
57 3 4 5 7 8 16 28 36 42 56 iscatd2 UVCCatIdC=xUIx