Metamath Proof Explorer


Theorem setrec1

Description: This is the first of two fundamental theorems about set recursion from which all other facts will be derived. It states that the class setrecs ( F ) is closed under F . This effectively sets the actual value of setrecs ( F ) as a lower bound for setrecs ( F ) , as it implies that any set generated by successive applications of F is a member of B . This theorem "gets off the ground" because we can start by letting A = (/) , and the hypotheses of the theorem will hold trivially.

Variable B represents an abbreviation of setrecs ( F ) or another name of setrecs ( F ) (for an example of the latter, see theorem setrecon).

Proof summary: Assume that A C_ B , meaning that all elements of A are in some set recursively generated by F . Then by setrec1lem3 , A is a subset of some set recursively generated by F . (It turns out that A itself is recursively generated by F , but we don't need this fact. See the comment to setrec1lem3 .) Therefore, by setrec1lem4 , ( FA ) is a subset of some set recursively generated by F . Thus, by ssuni , it is a subset of the union of all sets recursively generated by F .

See df-setrecs for a detailed description of how the setrecs definition works.

(Contributed by Emmett Weisz, 9-Oct-2020)

Ref Expression
Hypotheses setrec1.b B=setrecsF
setrec1.v φAV
setrec1.a φAB
Assertion setrec1 φFAB

Proof

Step Hyp Ref Expression
1 setrec1.b B=setrecsF
2 setrec1.v φAV
3 setrec1.a φAB
4 eqid y|zwwywzFwzyz=y|zwwywzFwzyz
5 3 sseld φaAaB
6 5 imp φaAaB
7 df-setrecs setrecsF=y|zwwywzFwzyz
8 1 7 eqtri B=y|zwwywzFwzyz
9 6 8 eleqtrdi φaAay|zwwywzFwzyz
10 eluni ay|zwwywzFwzyzxaxxy|zwwywzFwzyz
11 9 10 sylib φaAxaxxy|zwwywzFwzyz
12 11 ralrimiva φaAxaxxy|zwwywzFwzyz
13 4 2 12 setrec1lem3 φxAxxy|zwwywzFwzyz
14 nfv zφ
15 nfv zAx
16 nfaba1 _zy|zwwywzFwzyz
17 16 nfel2 zxy|zwwywzFwzyz
18 15 17 nfan zAxxy|zwwywzFwzyz
19 14 18 nfan zφAxxy|zwwywzFwzyz
20 2 adantr φAxxy|zwwywzFwzyzAV
21 simprl φAxxy|zwwywzFwzyzAx
22 simprr φAxxy|zwwywzFwzyzxy|zwwywzFwzyz
23 19 4 20 21 22 setrec1lem4 φAxxy|zwwywzFwzyzxFAy|zwwywzFwzyz
24 ssun2 FAxFA
25 23 24 jctil φAxxy|zwwywzFwzyzFAxFAxFAy|zwwywzFwzyz
26 ssuni FAxFAxFAy|zwwywzFwzyzFAy|zwwywzFwzyz
27 25 26 syl φAxxy|zwwywzFwzyzFAy|zwwywzFwzyz
28 13 27 exlimddv φFAy|zwwywzFwzyz
29 28 8 sseqtrrdi φFAB