Metamath Proof Explorer


Theorem sge0lefimpt

Description: A sum of nonnegative extended reals is smaller than a given extended real if and only if every finite subsum is smaller than it. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses sge0lefimpt.xph xφ
sge0lefimpt.a φAV
sge0lefimpt.b φxAB0+∞
sge0lefimpt.c φC*
Assertion sge0lefimpt φsum^xABCy𝒫AFinsum^xyBC

Proof

Step Hyp Ref Expression
1 sge0lefimpt.xph xφ
2 sge0lefimpt.a φAV
3 sge0lefimpt.b φxAB0+∞
4 sge0lefimpt.c φC*
5 eqid xAB=xAB
6 1 3 5 fmptdf φxAB:A0+∞
7 2 6 4 sge0lefi φsum^xABCy𝒫AFinsum^xAByC
8 elpwinss y𝒫AFinyA
9 8 resmptd y𝒫AFinxABy=xyB
10 9 fveq2d y𝒫AFinsum^xABy=sum^xyB
11 10 breq1d y𝒫AFinsum^xAByCsum^xyBC
12 11 ralbiia y𝒫AFinsum^xAByCy𝒫AFinsum^xyBC
13 12 a1i φy𝒫AFinsum^xAByCy𝒫AFinsum^xyBC
14 7 13 bitrd φsum^xABCy𝒫AFinsum^xyBC