Metamath Proof Explorer


Theorem sge0pnfval

Description: If a term in the sum of nonnegative extended reals is +oo , then the value of the sum is +oo . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0pnfval.x φXV
sge0pnfval.f φF:X0+∞
sge0pnfval.pnf φ+∞ranF
Assertion sge0pnfval φsum^F=+∞

Proof

Step Hyp Ref Expression
1 sge0pnfval.x φXV
2 sge0pnfval.f φF:X0+∞
3 sge0pnfval.pnf φ+∞ranF
4 1 2 sge0vald φsum^F=if+∞ranF+∞supranx𝒫XFinyxFy*<
5 3 iftrued φif+∞ranF+∞supranx𝒫XFinyxFy*<=+∞
6 4 5 eqtrd φsum^F=+∞