Metamath Proof Explorer


Theorem sgmf

Description: The divisor function is a function into the complex numbers. (Contributed by Mario Carneiro, 22-Sep-2014) (Revised by Mario Carneiro, 21-Jun-2015)

Ref Expression
Assertion sgmf σ:×

Proof

Step Hyp Ref Expression
1 fzfid xn1nFin
2 dvdsssfz1 np|pn1n
3 2 adantl xnp|pn1n
4 1 3 ssfid xnp|pnFin
5 elrabi kp|pnk
6 5 nncnd kp|pnk
7 simpl xnx
8 cxpcl kxkx
9 6 7 8 syl2anr xnkp|pnkx
10 4 9 fsumcl xnkp|pnkx
11 10 rgen2 xnkp|pnkx
12 df-sgm σ=x,nkp|pnkx
13 12 fmpo xnkp|pnkxσ:×
14 11 13 mpbi σ:×