Metamath Proof Explorer


Theorem sgnmulrp2

Description: Multiplication by a positive number does not affect signum. (Contributed by Thierry Arnoux, 2-Oct-2018)

Ref Expression
Assertion sgnmulrp2 A B + sgn A B = sgn A

Proof

Step Hyp Ref Expression
1 simpr A B + B +
2 1 rpred A B + B
3 sgnmul A B sgn A B = sgn A sgn B
4 2 3 syldan A B + sgn A B = sgn A sgn B
5 1 rpxrd A B + B *
6 1 rpgt0d A B + 0 < B
7 sgnp B * 0 < B sgn B = 1
8 5 6 7 syl2anc A B + sgn B = 1
9 8 oveq2d A B + sgn A sgn B = sgn A 1
10 simpl A B + A
11 sgnclre A sgn A
12 ax-1rid sgn A sgn A 1 = sgn A
13 10 11 12 3syl A B + sgn A 1 = sgn A
14 4 9 13 3eqtrd A B + sgn A B = sgn A