Description: A semigroup with an identity element which is not the empty set is a
monoid. Of course there could be monoids with the empty set as identity
element (see, for example, the monoid of the power set of a class under
union, pwmnd and pwmndid ), but these cannot be proven to be monoids
with this theorem. (Contributed by AV, 29-Jan-2024)
Could not format ( ( G e. Smgrp /\ E. e e. B ( e =/= (/) /\ e = .0. ) ) -> ( G e. Smgrp /\ E. e e. B A. x e. B ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) : No typesetting found for |- ( ( G e. Smgrp /\ E. e e. B ( e =/= (/) /\ e = .0. ) ) -> ( G e. Smgrp /\ E. e e. B A. x e. B ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) with typecode |-
Could not format ( G e. Mnd <-> ( G e. Smgrp /\ E. e e. B A. x e. B ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) : No typesetting found for |- ( G e. Mnd <-> ( G e. Smgrp /\ E. e e. B A. x e. B ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) with typecode |-
Could not format ( ( G e. Smgrp /\ E. e e. B ( e =/= (/) /\ e = .0. ) ) -> G e. Mnd ) : No typesetting found for |- ( ( G e. Smgrp /\ E. e e. B ( e =/= (/) /\ e = .0. ) ) -> G e. Mnd ) with typecode |-