Metamath Proof Explorer


Theorem shftval2

Description: Value of a sequence shifted by A - B . (Contributed by NM, 20-Jul-2005) (Revised by Mario Carneiro, 5-Nov-2013)

Ref Expression
Hypothesis shftfval.1 FV
Assertion shftval2 ABCFshiftABA+C=FB+C

Proof

Step Hyp Ref Expression
1 shftfval.1 FV
2 subcl ABAB
3 2 3adant3 ABCAB
4 addcl ACA+C
5 1 shftval ABA+CFshiftABA+C=FA+C-AB
6 3 4 5 3imp3i2an ABCFshiftABA+C=FA+C-AB
7 pnncan ACBA+C-AB=C+B
8 7 3com23 ABCA+C-AB=C+B
9 addcom BCB+C=C+B
10 9 3adant1 ABCB+C=C+B
11 8 10 eqtr4d ABCA+C-AB=B+C
12 11 fveq2d ABCFA+C-AB=FB+C
13 6 12 eqtrd ABCFshiftABA+C=FB+C