Metamath Proof Explorer


Theorem sigaval

Description: The set of sigma-algebra with a given base set. (Contributed by Thierry Arnoux, 23-Sep-2016)

Ref Expression
Assertion sigaval OVsigAlgebraO=s|s𝒫OOsxsOxsx𝒫sxωxs

Proof

Step Hyp Ref Expression
1 df-rab s𝒫𝒫O|OsxsOxsx𝒫sxωxs=s|s𝒫𝒫OOsxsOxsx𝒫sxωxs
2 velpw s𝒫𝒫Os𝒫O
3 2 anbi1i s𝒫𝒫OOsxsOxsx𝒫sxωxss𝒫OOsxsOxsx𝒫sxωxs
4 3 abbii s|s𝒫𝒫OOsxsOxsx𝒫sxωxs=s|s𝒫OOsxsOxsx𝒫sxωxs
5 1 4 eqtri s𝒫𝒫O|OsxsOxsx𝒫sxωxs=s|s𝒫OOsxsOxsx𝒫sxωxs
6 pwexg OV𝒫OV
7 pwexg 𝒫OV𝒫𝒫OV
8 rabexg 𝒫𝒫OVs𝒫𝒫O|OsxsOxsx𝒫sxωxsV
9 6 7 8 3syl OVs𝒫𝒫O|OsxsOxsx𝒫sxωxsV
10 5 9 eqeltrrid OVs|s𝒫OOsxsOxsx𝒫sxωxsV
11 pweq o=O𝒫o=𝒫O
12 11 sseq2d o=Os𝒫os𝒫O
13 eleq1 o=OosOs
14 difeq1 o=Oox=Ox
15 14 eleq1d o=OoxsOxs
16 15 ralbidv o=OxsoxsxsOxs
17 13 16 3anbi12d o=Oosxsoxsx𝒫sxωxsOsxsOxsx𝒫sxωxs
18 12 17 anbi12d o=Os𝒫oosxsoxsx𝒫sxωxss𝒫OOsxsOxsx𝒫sxωxs
19 18 abbidv o=Os|s𝒫oosxsoxsx𝒫sxωxs=s|s𝒫OOsxsOxsx𝒫sxωxs
20 df-siga sigAlgebra=oVs|s𝒫oosxsoxsx𝒫sxωxs
21 19 20 fvmptg OVs|s𝒫OOsxsOxsx𝒫sxωxsVsigAlgebraO=s|s𝒫OOsxsOxsx𝒫sxωxs
22 10 21 mpdan OVsigAlgebraO=s|s𝒫OOsxsOxsx𝒫sxωxs