Metamath Proof Explorer


Theorem signshnz

Description: H is not the empty word. (Contributed by Thierry Arnoux, 14-Oct-2018)

Ref Expression
Hypotheses signsv.p ˙=a101,b101ifb=0ab
signsv.w W=Basendx101+ndx˙
signsv.t T=fWordn0..^fWi=0nsgnfi
signsv.v V=fWordj1..^fifTfjTfj110
signs.h H=⟨“0”⟩++FfF++⟨“0”⟩fc×C
Assertion signshnz FWordC+H

Proof

Step Hyp Ref Expression
1 signsv.p ˙=a101,b101ifb=0ab
2 signsv.w W=Basendx101+ndx˙
3 signsv.t T=fWordn0..^fWi=0nsgnfi
4 signsv.v V=fWordj1..^fifTfjTfj110
5 signs.h H=⟨“0”⟩++FfF++⟨“0”⟩fc×C
6 1 2 3 4 5 signshlen FWordC+H=F+1
7 lencl FWordF0
8 7 adantr FWordC+F0
9 nn0p1nn F0F+1
10 8 9 syl FWordC+F+1
11 6 10 eqeltrd FWordC+H
12 11 nnne0d FWordC+H0
13 1 2 3 4 5 signshwrd FWordC+HWord
14 hasheq0 HWordH=0H=
15 13 14 syl FWordC+H=0H=
16 15 necon3bid FWordC+H0H
17 12 16 mpbid FWordC+H