Metamath Proof Explorer


Theorem simpgnideld

Description: A simple group contains a nonidentity element. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses simpgnideld.1 B=BaseG
simpgnideld.2 0˙=0G
simpgnideld.3 φGSimpGrp
Assertion simpgnideld φxB¬x=0˙

Proof

Step Hyp Ref Expression
1 simpgnideld.1 B=BaseG
2 simpgnideld.2 0˙=0G
3 simpgnideld.3 φGSimpGrp
4 1 2 3 simpgntrivd φ¬B=0˙
5 3 simpggrpd φGGrp
6 grpmnd GGrpGMnd
7 1 2 mndidcl GMnd0˙B
8 5 6 7 3syl φ0˙B
9 8 ne0d φB
10 eqsn BB=0˙xBx=0˙
11 9 10 syl φB=0˙xBx=0˙
12 4 11 mtbid φ¬xBx=0˙
13 rexnal xB¬x=0˙¬xBx=0˙
14 12 13 sylibr φxB¬x=0˙