Metamath Proof Explorer


Theorem simpgnideld

Description: A simple group contains a nonidentity element. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses simpgnideld.1 B = Base G
simpgnideld.2 0 ˙ = 0 G
simpgnideld.3 φ G SimpGrp
Assertion simpgnideld φ x B ¬ x = 0 ˙

Proof

Step Hyp Ref Expression
1 simpgnideld.1 B = Base G
2 simpgnideld.2 0 ˙ = 0 G
3 simpgnideld.3 φ G SimpGrp
4 1 2 3 simpgntrivd φ ¬ B = 0 ˙
5 3 simpggrpd φ G Grp
6 grpmnd G Grp G Mnd
7 1 2 mndidcl G Mnd 0 ˙ B
8 5 6 7 3syl φ 0 ˙ B
9 8 ne0d φ B
10 eqsn B B = 0 ˙ x B x = 0 ˙
11 9 10 syl φ B = 0 ˙ x B x = 0 ˙
12 4 11 mtbid φ ¬ x B x = 0 ˙
13 rexnal x B ¬ x = 0 ˙ ¬ x B x = 0 ˙
14 12 13 sylibr φ x B ¬ x = 0 ˙