Metamath Proof Explorer


Theorem sincos4thpi

Description: The sine and cosine of _pi / 4 . (Contributed by Paul Chapman, 25-Jan-2008)

Ref Expression
Assertion sincos4thpi sinπ4=12cosπ4=12

Proof

Step Hyp Ref Expression
1 halfcn 12
2 ax-1cn 1
3 2halves 112+12=1
4 2 3 ax-mp 12+12=1
5 sincosq1eq 121212+12=1sin12π2=cos12π2
6 1 1 4 5 mp3an sin12π2=cos12π2
7 6 oveq2i sin12π2sin12π2=sin12π2cos12π2
8 7 oveq2i 2sin12π2sin12π2=2sin12π2cos12π2
9 2cn 2
10 pire π
11 10 recni π
12 2ne0 20
13 2 9 11 9 12 12 divmuldivi 12π2=1π22
14 11 mullidi 1π=π
15 2t2e4 22=4
16 14 15 oveq12i 1π22=π4
17 13 16 eqtri 12π2=π4
18 17 fveq2i sin12π2=sinπ4
19 18 18 oveq12i sin12π2sin12π2=sinπ4sinπ4
20 19 oveq2i 2sin12π2sin12π2=2sinπ4sinπ4
21 9 12 recidi 212=1
22 21 oveq1i 212π2=1π2
23 2re 2
24 10 23 12 redivcli π2
25 24 recni π2
26 9 1 25 mulassi 212π2=212π2
27 25 mullidi 1π2=π2
28 22 26 27 3eqtr3i 212π2=π2
29 28 fveq2i sin212π2=sinπ2
30 1 25 mulcli 12π2
31 sin2t 12π2sin212π2=2sin12π2cos12π2
32 30 31 ax-mp sin212π2=2sin12π2cos12π2
33 sinhalfpi sinπ2=1
34 29 32 33 3eqtr3i 2sin12π2cos12π2=1
35 8 20 34 3eqtr3i 2sinπ4sinπ4=1
36 35 fveq2i 2sinπ4sinπ4=1
37 4re 4
38 4ne0 40
39 10 37 38 redivcli π4
40 resincl π4sinπ4
41 39 40 ax-mp sinπ4
42 41 41 remulcli sinπ4sinπ4
43 0le2 02
44 41 msqge0i 0sinπ4sinπ4
45 23 42 43 44 sqrtmulii 2sinπ4sinπ4=2sinπ4sinπ4
46 sqrt1 1=1
47 36 45 46 3eqtr3ri 1=2sinπ4sinπ4
48 42 sqrtcli 0sinπ4sinπ4sinπ4sinπ4
49 44 48 ax-mp sinπ4sinπ4
50 49 recni sinπ4sinπ4
51 sqrt2re 2
52 51 recni 2
53 sqrt00 2022=02=0
54 23 43 53 mp2an 2=02=0
55 54 necon3bii 2020
56 12 55 mpbir 20
57 52 56 pm3.2i 220
58 divmul2 1sinπ4sinπ422012=sinπ4sinπ41=2sinπ4sinπ4
59 2 50 57 58 mp3an 12=sinπ4sinπ41=2sinπ4sinπ4
60 47 59 mpbir 12=sinπ4sinπ4
61 0re 0
62 pipos 0<π
63 4pos 0<4
64 10 37 62 63 divgt0ii 0<π4
65 1re 1
66 pigt2lt4 2<ππ<4
67 66 simpri π<4
68 10 37 37 63 ltdiv1ii π<4π4<44
69 67 68 mpbi π4<44
70 37 recni 4
71 70 38 dividi 44=1
72 69 71 breqtri π4<1
73 39 65 72 ltleii π41
74 0xr 0*
75 elioc2 0*1π401π40<π4π41
76 74 65 75 mp2an π401π40<π4π41
77 39 64 73 76 mpbir3an π401
78 sin01gt0 π4010<sinπ4
79 77 78 ax-mp 0<sinπ4
80 61 41 79 ltleii 0sinπ4
81 41 sqrtmsqi 0sinπ4sinπ4sinπ4=sinπ4
82 80 81 ax-mp sinπ4sinπ4=sinπ4
83 60 82 eqtr2i sinπ4=12
84 60 82 eqtri 12=sinπ4
85 17 fveq2i cos12π2=cosπ4
86 6 18 85 3eqtr3i sinπ4=cosπ4
87 84 86 eqtr2i cosπ4=12
88 83 87 pm3.2i sinπ4=12cosπ4=12