Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Properties of pi = 3.14159...
sincos4thpi
Next ⟩
tan4thpi
Metamath Proof Explorer
Ascii
Unicode
Theorem
sincos4thpi
Description:
The sine and cosine of
_pi / 4
.
(Contributed by
Paul Chapman
, 25-Jan-2008)
Ref
Expression
Assertion
sincos4thpi
π
π
⊢
sin
π
4
=
1
2
∧
cos
π
4
=
1
2
Proof
Step
Hyp
Ref
Expression
1
halfcn
⊢
1
2
∈
ℂ
2
ax-1cn
⊢
1
∈
ℂ
3
2halves
⊢
1
∈
ℂ
→
1
2
+
1
2
=
1
4
2
3
ax-mp
⊢
1
2
+
1
2
=
1
5
sincosq1eq
π
π
⊢
1
2
∈
ℂ
∧
1
2
∈
ℂ
∧
1
2
+
1
2
=
1
→
sin
1
2
π
2
=
cos
1
2
π
2
6
1
1
4
5
mp3an
π
π
⊢
sin
1
2
π
2
=
cos
1
2
π
2
7
6
oveq2i
π
π
π
π
⊢
sin
1
2
π
2
sin
1
2
π
2
=
sin
1
2
π
2
cos
1
2
π
2
8
7
oveq2i
π
π
π
π
⊢
2
sin
1
2
π
2
sin
1
2
π
2
=
2
sin
1
2
π
2
cos
1
2
π
2
9
2cn
⊢
2
∈
ℂ
10
pire
π
⊢
π
∈
ℝ
11
10
recni
π
⊢
π
∈
ℂ
12
2ne0
⊢
2
≠
0
13
2
9
11
9
12
12
divmuldivi
π
π
⊢
1
2
π
2
=
1
π
2
⋅
2
14
11
mullidi
π
π
⊢
1
π
=
π
15
2t2e4
⊢
2
⋅
2
=
4
16
14
15
oveq12i
π
π
⊢
1
π
2
⋅
2
=
π
4
17
13
16
eqtri
π
π
⊢
1
2
π
2
=
π
4
18
17
fveq2i
π
π
⊢
sin
1
2
π
2
=
sin
π
4
19
18
18
oveq12i
π
π
π
π
⊢
sin
1
2
π
2
sin
1
2
π
2
=
sin
π
4
sin
π
4
20
19
oveq2i
π
π
π
π
⊢
2
sin
1
2
π
2
sin
1
2
π
2
=
2
sin
π
4
sin
π
4
21
9
12
recidi
⊢
2
1
2
=
1
22
21
oveq1i
π
π
⊢
2
1
2
π
2
=
1
π
2
23
2re
⊢
2
∈
ℝ
24
10
23
12
redivcli
π
⊢
π
2
∈
ℝ
25
24
recni
π
⊢
π
2
∈
ℂ
26
9
1
25
mulassi
π
π
⊢
2
1
2
π
2
=
2
1
2
π
2
27
25
mullidi
π
π
⊢
1
π
2
=
π
2
28
22
26
27
3eqtr3i
π
π
⊢
2
1
2
π
2
=
π
2
29
28
fveq2i
π
π
⊢
sin
2
1
2
π
2
=
sin
π
2
30
1
25
mulcli
π
⊢
1
2
π
2
∈
ℂ
31
sin2t
π
π
π
π
⊢
1
2
π
2
∈
ℂ
→
sin
2
1
2
π
2
=
2
sin
1
2
π
2
cos
1
2
π
2
32
30
31
ax-mp
π
π
π
⊢
sin
2
1
2
π
2
=
2
sin
1
2
π
2
cos
1
2
π
2
33
sinhalfpi
π
⊢
sin
π
2
=
1
34
29
32
33
3eqtr3i
π
π
⊢
2
sin
1
2
π
2
cos
1
2
π
2
=
1
35
8
20
34
3eqtr3i
π
π
⊢
2
sin
π
4
sin
π
4
=
1
36
35
fveq2i
π
π
⊢
2
sin
π
4
sin
π
4
=
1
37
4re
⊢
4
∈
ℝ
38
4ne0
⊢
4
≠
0
39
10
37
38
redivcli
π
⊢
π
4
∈
ℝ
40
resincl
π
π
⊢
π
4
∈
ℝ
→
sin
π
4
∈
ℝ
41
39
40
ax-mp
π
⊢
sin
π
4
∈
ℝ
42
41
41
remulcli
π
π
⊢
sin
π
4
sin
π
4
∈
ℝ
43
0le2
⊢
0
≤
2
44
41
msqge0i
π
π
⊢
0
≤
sin
π
4
sin
π
4
45
23
42
43
44
sqrtmulii
π
π
π
π
⊢
2
sin
π
4
sin
π
4
=
2
sin
π
4
sin
π
4
46
sqrt1
⊢
1
=
1
47
36
45
46
3eqtr3ri
π
π
⊢
1
=
2
sin
π
4
sin
π
4
48
42
sqrtcli
π
π
π
π
⊢
0
≤
sin
π
4
sin
π
4
→
sin
π
4
sin
π
4
∈
ℝ
49
44
48
ax-mp
π
π
⊢
sin
π
4
sin
π
4
∈
ℝ
50
49
recni
π
π
⊢
sin
π
4
sin
π
4
∈
ℂ
51
sqrt2re
⊢
2
∈
ℝ
52
51
recni
⊢
2
∈
ℂ
53
sqrt00
⊢
2
∈
ℝ
∧
0
≤
2
→
2
=
0
↔
2
=
0
54
23
43
53
mp2an
⊢
2
=
0
↔
2
=
0
55
54
necon3bii
⊢
2
≠
0
↔
2
≠
0
56
12
55
mpbir
⊢
2
≠
0
57
52
56
pm3.2i
⊢
2
∈
ℂ
∧
2
≠
0
58
divmul2
π
π
π
π
π
π
⊢
1
∈
ℂ
∧
sin
π
4
sin
π
4
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
→
1
2
=
sin
π
4
sin
π
4
↔
1
=
2
sin
π
4
sin
π
4
59
2
50
57
58
mp3an
π
π
π
π
⊢
1
2
=
sin
π
4
sin
π
4
↔
1
=
2
sin
π
4
sin
π
4
60
47
59
mpbir
π
π
⊢
1
2
=
sin
π
4
sin
π
4
61
0re
⊢
0
∈
ℝ
62
pipos
π
⊢
0
<
π
63
4pos
⊢
0
<
4
64
10
37
62
63
divgt0ii
π
⊢
0
<
π
4
65
1re
⊢
1
∈
ℝ
66
pigt2lt4
π
π
⊢
2
<
π
∧
π
<
4
67
66
simpri
π
⊢
π
<
4
68
10
37
37
63
ltdiv1ii
π
π
⊢
π
<
4
↔
π
4
<
4
4
69
67
68
mpbi
π
⊢
π
4
<
4
4
70
37
recni
⊢
4
∈
ℂ
71
70
38
dividi
⊢
4
4
=
1
72
69
71
breqtri
π
⊢
π
4
<
1
73
39
65
72
ltleii
π
⊢
π
4
≤
1
74
0xr
⊢
0
∈
ℝ
*
75
elioc2
π
π
π
π
⊢
0
∈
ℝ
*
∧
1
∈
ℝ
→
π
4
∈
0
1
↔
π
4
∈
ℝ
∧
0
<
π
4
∧
π
4
≤
1
76
74
65
75
mp2an
π
π
π
π
⊢
π
4
∈
0
1
↔
π
4
∈
ℝ
∧
0
<
π
4
∧
π
4
≤
1
77
39
64
73
76
mpbir3an
π
⊢
π
4
∈
0
1
78
sin01gt0
π
π
⊢
π
4
∈
0
1
→
0
<
sin
π
4
79
77
78
ax-mp
π
⊢
0
<
sin
π
4
80
61
41
79
ltleii
π
⊢
0
≤
sin
π
4
81
41
sqrtmsqi
π
π
π
π
⊢
0
≤
sin
π
4
→
sin
π
4
sin
π
4
=
sin
π
4
82
80
81
ax-mp
π
π
π
⊢
sin
π
4
sin
π
4
=
sin
π
4
83
60
82
eqtr2i
π
⊢
sin
π
4
=
1
2
84
60
82
eqtri
π
⊢
1
2
=
sin
π
4
85
17
fveq2i
π
π
⊢
cos
1
2
π
2
=
cos
π
4
86
6
18
85
3eqtr3i
π
π
⊢
sin
π
4
=
cos
π
4
87
84
86
eqtr2i
π
⊢
cos
π
4
=
1
2
88
83
87
pm3.2i
π
π
⊢
sin
π
4
=
1
2
∧
cos
π
4
=
1
2