Metamath Proof Explorer


Theorem sinhalfpilem

Description: Lemma for sinhalfpi and coshalfpi . (Contributed by Paul Chapman, 23-Jan-2008)

Ref Expression
Assertion sinhalfpilem sinπ2=1cosπ2=0

Proof

Step Hyp Ref Expression
1 0lt1 0<1
2 0re 0
3 1re 1
4 2 3 ltnsymi 0<1¬1<0
5 1 4 ax-mp ¬1<0
6 lt0neg1 11<00<1
7 3 6 ax-mp 1<00<1
8 5 7 mtbi ¬0<1
9 pire π
10 9 rehalfcli π2
11 2re 2
12 pipos 0<π
13 2pos 0<2
14 9 11 12 13 divgt0ii 0<π2
15 4re 4
16 pigt2lt4 2<ππ<4
17 16 simpri π<4
18 9 15 17 ltleii π4
19 11 13 pm3.2i 20<2
20 ledivmul π220<2π22π22
21 9 11 19 20 mp3an π22π22
22 2t2e4 22=4
23 22 breq2i π22π4
24 21 23 bitr2i π4π22
25 18 24 mpbi π22
26 0xr 0*
27 elioc2 0*2π202π20<π2π22
28 26 11 27 mp2an π202π20<π2π22
29 10 14 25 28 mpbir3an π202
30 sin02gt0 π2020<sinπ2
31 29 30 ax-mp 0<sinπ2
32 breq2 sinπ2=10<sinπ20<1
33 31 32 mpbii sinπ2=10<1
34 8 33 mto ¬sinπ2=1
35 sq1 12=1
36 resincl π2sinπ2
37 10 36 ax-mp sinπ2
38 37 31 gt0ne0ii sinπ20
39 38 neii ¬sinπ2=0
40 2ne0 20
41 40 neii ¬2=0
42 9 recni π
43 2cn 2
44 42 43 40 divcan2i 2π2=π
45 44 fveq2i sin2π2=sinπ
46 10 recni π2
47 sin2t π2sin2π2=2sinπ2cosπ2
48 46 47 ax-mp sin2π2=2sinπ2cosπ2
49 45 48 eqtr3i sinπ=2sinπ2cosπ2
50 sinpi sinπ=0
51 49 50 eqtr3i 2sinπ2cosπ2=0
52 sincl π2sinπ2
53 46 52 ax-mp sinπ2
54 coscl π2cosπ2
55 46 54 ax-mp cosπ2
56 53 55 mulcli sinπ2cosπ2
57 43 56 mul0ori 2sinπ2cosπ2=02=0sinπ2cosπ2=0
58 51 57 mpbi 2=0sinπ2cosπ2=0
59 41 58 mtpor sinπ2cosπ2=0
60 53 55 mul0ori sinπ2cosπ2=0sinπ2=0cosπ2=0
61 59 60 mpbi sinπ2=0cosπ2=0
62 39 61 mtpor cosπ2=0
63 62 oveq1i cosπ22=02
64 sq0 02=0
65 63 64 eqtri cosπ22=0
66 65 oveq2i sinπ22+cosπ22=sinπ22+0
67 sincossq π2sinπ22+cosπ22=1
68 46 67 ax-mp sinπ22+cosπ22=1
69 66 68 eqtr3i sinπ22+0=1
70 53 sqcli sinπ22
71 70 addridi sinπ22+0=sinπ22
72 35 69 71 3eqtr2ri sinπ22=12
73 ax-1cn 1
74 53 73 sqeqori sinπ22=12sinπ2=1sinπ2=1
75 72 74 mpbi sinπ2=1sinπ2=1
76 75 ori ¬sinπ2=1sinπ2=1
77 34 76 mt3 sinπ2=1
78 77 62 pm3.2i sinπ2=1cosπ2=0