Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Properties of pi = 3.14159...
sinhalfpilem
Next ⟩
halfpire
Metamath Proof Explorer
Ascii
Unicode
Theorem
sinhalfpilem
Description:
Lemma for
sinhalfpi
and
coshalfpi
.
(Contributed by
Paul Chapman
, 23-Jan-2008)
Ref
Expression
Assertion
sinhalfpilem
π
π
⊢
sin
π
2
=
1
∧
cos
π
2
=
0
Proof
Step
Hyp
Ref
Expression
1
0lt1
⊢
0
<
1
2
0re
⊢
0
∈
ℝ
3
1re
⊢
1
∈
ℝ
4
2
3
ltnsymi
⊢
0
<
1
→
¬
1
<
0
5
1
4
ax-mp
⊢
¬
1
<
0
6
lt0neg1
⊢
1
∈
ℝ
→
1
<
0
↔
0
<
−
1
7
3
6
ax-mp
⊢
1
<
0
↔
0
<
−
1
8
5
7
mtbi
⊢
¬
0
<
−
1
9
pire
π
⊢
π
∈
ℝ
10
9
rehalfcli
π
⊢
π
2
∈
ℝ
11
2re
⊢
2
∈
ℝ
12
pipos
π
⊢
0
<
π
13
2pos
⊢
0
<
2
14
9
11
12
13
divgt0ii
π
⊢
0
<
π
2
15
4re
⊢
4
∈
ℝ
16
pigt2lt4
π
π
⊢
2
<
π
∧
π
<
4
17
16
simpri
π
⊢
π
<
4
18
9
15
17
ltleii
π
⊢
π
≤
4
19
11
13
pm3.2i
⊢
2
∈
ℝ
∧
0
<
2
20
ledivmul
π
π
π
⊢
π
∈
ℝ
∧
2
∈
ℝ
∧
2
∈
ℝ
∧
0
<
2
→
π
2
≤
2
↔
π
≤
2
⋅
2
21
9
11
19
20
mp3an
π
π
⊢
π
2
≤
2
↔
π
≤
2
⋅
2
22
2t2e4
⊢
2
⋅
2
=
4
23
22
breq2i
π
π
⊢
π
≤
2
⋅
2
↔
π
≤
4
24
21
23
bitr2i
π
π
⊢
π
≤
4
↔
π
2
≤
2
25
18
24
mpbi
π
⊢
π
2
≤
2
26
0xr
⊢
0
∈
ℝ
*
27
elioc2
π
π
π
π
⊢
0
∈
ℝ
*
∧
2
∈
ℝ
→
π
2
∈
0
2
↔
π
2
∈
ℝ
∧
0
<
π
2
∧
π
2
≤
2
28
26
11
27
mp2an
π
π
π
π
⊢
π
2
∈
0
2
↔
π
2
∈
ℝ
∧
0
<
π
2
∧
π
2
≤
2
29
10
14
25
28
mpbir3an
π
⊢
π
2
∈
0
2
30
sin02gt0
π
π
⊢
π
2
∈
0
2
→
0
<
sin
π
2
31
29
30
ax-mp
π
⊢
0
<
sin
π
2
32
breq2
π
π
⊢
sin
π
2
=
−
1
→
0
<
sin
π
2
↔
0
<
−
1
33
31
32
mpbii
π
⊢
sin
π
2
=
−
1
→
0
<
−
1
34
8
33
mto
π
⊢
¬
sin
π
2
=
−
1
35
sq1
⊢
1
2
=
1
36
resincl
π
π
⊢
π
2
∈
ℝ
→
sin
π
2
∈
ℝ
37
10
36
ax-mp
π
⊢
sin
π
2
∈
ℝ
38
37
31
gt0ne0ii
π
⊢
sin
π
2
≠
0
39
38
neii
π
⊢
¬
sin
π
2
=
0
40
2ne0
⊢
2
≠
0
41
40
neii
⊢
¬
2
=
0
42
9
recni
π
⊢
π
∈
ℂ
43
2cn
⊢
2
∈
ℂ
44
42
43
40
divcan2i
π
π
⊢
2
π
2
=
π
45
44
fveq2i
π
π
⊢
sin
2
π
2
=
sin
π
46
10
recni
π
⊢
π
2
∈
ℂ
47
sin2t
π
π
π
π
⊢
π
2
∈
ℂ
→
sin
2
π
2
=
2
sin
π
2
cos
π
2
48
46
47
ax-mp
π
π
π
⊢
sin
2
π
2
=
2
sin
π
2
cos
π
2
49
45
48
eqtr3i
π
π
π
⊢
sin
π
=
2
sin
π
2
cos
π
2
50
sinpi
π
⊢
sin
π
=
0
51
49
50
eqtr3i
π
π
⊢
2
sin
π
2
cos
π
2
=
0
52
sincl
π
π
⊢
π
2
∈
ℂ
→
sin
π
2
∈
ℂ
53
46
52
ax-mp
π
⊢
sin
π
2
∈
ℂ
54
coscl
π
π
⊢
π
2
∈
ℂ
→
cos
π
2
∈
ℂ
55
46
54
ax-mp
π
⊢
cos
π
2
∈
ℂ
56
53
55
mulcli
π
π
⊢
sin
π
2
cos
π
2
∈
ℂ
57
43
56
mul0ori
π
π
π
π
⊢
2
sin
π
2
cos
π
2
=
0
↔
2
=
0
∨
sin
π
2
cos
π
2
=
0
58
51
57
mpbi
π
π
⊢
2
=
0
∨
sin
π
2
cos
π
2
=
0
59
41
58
mtpor
π
π
⊢
sin
π
2
cos
π
2
=
0
60
53
55
mul0ori
π
π
π
π
⊢
sin
π
2
cos
π
2
=
0
↔
sin
π
2
=
0
∨
cos
π
2
=
0
61
59
60
mpbi
π
π
⊢
sin
π
2
=
0
∨
cos
π
2
=
0
62
39
61
mtpor
π
⊢
cos
π
2
=
0
63
62
oveq1i
π
⊢
cos
π
2
2
=
0
2
64
sq0
⊢
0
2
=
0
65
63
64
eqtri
π
⊢
cos
π
2
2
=
0
66
65
oveq2i
π
π
π
⊢
sin
π
2
2
+
cos
π
2
2
=
sin
π
2
2
+
0
67
sincossq
π
π
π
⊢
π
2
∈
ℂ
→
sin
π
2
2
+
cos
π
2
2
=
1
68
46
67
ax-mp
π
π
⊢
sin
π
2
2
+
cos
π
2
2
=
1
69
66
68
eqtr3i
π
⊢
sin
π
2
2
+
0
=
1
70
53
sqcli
π
⊢
sin
π
2
2
∈
ℂ
71
70
addridi
π
π
⊢
sin
π
2
2
+
0
=
sin
π
2
2
72
35
69
71
3eqtr2ri
π
⊢
sin
π
2
2
=
1
2
73
ax-1cn
⊢
1
∈
ℂ
74
53
73
sqeqori
π
π
π
⊢
sin
π
2
2
=
1
2
↔
sin
π
2
=
1
∨
sin
π
2
=
−
1
75
72
74
mpbi
π
π
⊢
sin
π
2
=
1
∨
sin
π
2
=
−
1
76
75
ori
π
π
⊢
¬
sin
π
2
=
1
→
sin
π
2
=
−
1
77
34
76
mt3
π
⊢
sin
π
2
=
1
78
77
62
pm3.2i
π
π
⊢
sin
π
2
=
1
∧
cos
π
2
=
0