Step |
Hyp |
Ref |
Expression |
1 |
|
0lt1 |
|- 0 < 1 |
2 |
|
0re |
|- 0 e. RR |
3 |
|
1re |
|- 1 e. RR |
4 |
2 3
|
ltnsymi |
|- ( 0 < 1 -> -. 1 < 0 ) |
5 |
1 4
|
ax-mp |
|- -. 1 < 0 |
6 |
|
lt0neg1 |
|- ( 1 e. RR -> ( 1 < 0 <-> 0 < -u 1 ) ) |
7 |
3 6
|
ax-mp |
|- ( 1 < 0 <-> 0 < -u 1 ) |
8 |
5 7
|
mtbi |
|- -. 0 < -u 1 |
9 |
|
pire |
|- _pi e. RR |
10 |
9
|
rehalfcli |
|- ( _pi / 2 ) e. RR |
11 |
|
2re |
|- 2 e. RR |
12 |
|
pipos |
|- 0 < _pi |
13 |
|
2pos |
|- 0 < 2 |
14 |
9 11 12 13
|
divgt0ii |
|- 0 < ( _pi / 2 ) |
15 |
|
4re |
|- 4 e. RR |
16 |
|
pigt2lt4 |
|- ( 2 < _pi /\ _pi < 4 ) |
17 |
16
|
simpri |
|- _pi < 4 |
18 |
9 15 17
|
ltleii |
|- _pi <_ 4 |
19 |
11 13
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
20 |
|
ledivmul |
|- ( ( _pi e. RR /\ 2 e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( _pi / 2 ) <_ 2 <-> _pi <_ ( 2 x. 2 ) ) ) |
21 |
9 11 19 20
|
mp3an |
|- ( ( _pi / 2 ) <_ 2 <-> _pi <_ ( 2 x. 2 ) ) |
22 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
23 |
22
|
breq2i |
|- ( _pi <_ ( 2 x. 2 ) <-> _pi <_ 4 ) |
24 |
21 23
|
bitr2i |
|- ( _pi <_ 4 <-> ( _pi / 2 ) <_ 2 ) |
25 |
18 24
|
mpbi |
|- ( _pi / 2 ) <_ 2 |
26 |
|
0xr |
|- 0 e. RR* |
27 |
|
elioc2 |
|- ( ( 0 e. RR* /\ 2 e. RR ) -> ( ( _pi / 2 ) e. ( 0 (,] 2 ) <-> ( ( _pi / 2 ) e. RR /\ 0 < ( _pi / 2 ) /\ ( _pi / 2 ) <_ 2 ) ) ) |
28 |
26 11 27
|
mp2an |
|- ( ( _pi / 2 ) e. ( 0 (,] 2 ) <-> ( ( _pi / 2 ) e. RR /\ 0 < ( _pi / 2 ) /\ ( _pi / 2 ) <_ 2 ) ) |
29 |
10 14 25 28
|
mpbir3an |
|- ( _pi / 2 ) e. ( 0 (,] 2 ) |
30 |
|
sin02gt0 |
|- ( ( _pi / 2 ) e. ( 0 (,] 2 ) -> 0 < ( sin ` ( _pi / 2 ) ) ) |
31 |
29 30
|
ax-mp |
|- 0 < ( sin ` ( _pi / 2 ) ) |
32 |
|
breq2 |
|- ( ( sin ` ( _pi / 2 ) ) = -u 1 -> ( 0 < ( sin ` ( _pi / 2 ) ) <-> 0 < -u 1 ) ) |
33 |
31 32
|
mpbii |
|- ( ( sin ` ( _pi / 2 ) ) = -u 1 -> 0 < -u 1 ) |
34 |
8 33
|
mto |
|- -. ( sin ` ( _pi / 2 ) ) = -u 1 |
35 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
36 |
|
resincl |
|- ( ( _pi / 2 ) e. RR -> ( sin ` ( _pi / 2 ) ) e. RR ) |
37 |
10 36
|
ax-mp |
|- ( sin ` ( _pi / 2 ) ) e. RR |
38 |
37 31
|
gt0ne0ii |
|- ( sin ` ( _pi / 2 ) ) =/= 0 |
39 |
38
|
neii |
|- -. ( sin ` ( _pi / 2 ) ) = 0 |
40 |
|
2ne0 |
|- 2 =/= 0 |
41 |
40
|
neii |
|- -. 2 = 0 |
42 |
9
|
recni |
|- _pi e. CC |
43 |
|
2cn |
|- 2 e. CC |
44 |
42 43 40
|
divcan2i |
|- ( 2 x. ( _pi / 2 ) ) = _pi |
45 |
44
|
fveq2i |
|- ( sin ` ( 2 x. ( _pi / 2 ) ) ) = ( sin ` _pi ) |
46 |
10
|
recni |
|- ( _pi / 2 ) e. CC |
47 |
|
sin2t |
|- ( ( _pi / 2 ) e. CC -> ( sin ` ( 2 x. ( _pi / 2 ) ) ) = ( 2 x. ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) ) ) |
48 |
46 47
|
ax-mp |
|- ( sin ` ( 2 x. ( _pi / 2 ) ) ) = ( 2 x. ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) ) |
49 |
45 48
|
eqtr3i |
|- ( sin ` _pi ) = ( 2 x. ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) ) |
50 |
|
sinpi |
|- ( sin ` _pi ) = 0 |
51 |
49 50
|
eqtr3i |
|- ( 2 x. ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) ) = 0 |
52 |
|
sincl |
|- ( ( _pi / 2 ) e. CC -> ( sin ` ( _pi / 2 ) ) e. CC ) |
53 |
46 52
|
ax-mp |
|- ( sin ` ( _pi / 2 ) ) e. CC |
54 |
|
coscl |
|- ( ( _pi / 2 ) e. CC -> ( cos ` ( _pi / 2 ) ) e. CC ) |
55 |
46 54
|
ax-mp |
|- ( cos ` ( _pi / 2 ) ) e. CC |
56 |
53 55
|
mulcli |
|- ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) e. CC |
57 |
43 56
|
mul0ori |
|- ( ( 2 x. ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) ) = 0 <-> ( 2 = 0 \/ ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) = 0 ) ) |
58 |
51 57
|
mpbi |
|- ( 2 = 0 \/ ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) = 0 ) |
59 |
41 58
|
mtpor |
|- ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) = 0 |
60 |
53 55
|
mul0ori |
|- ( ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) = 0 <-> ( ( sin ` ( _pi / 2 ) ) = 0 \/ ( cos ` ( _pi / 2 ) ) = 0 ) ) |
61 |
59 60
|
mpbi |
|- ( ( sin ` ( _pi / 2 ) ) = 0 \/ ( cos ` ( _pi / 2 ) ) = 0 ) |
62 |
39 61
|
mtpor |
|- ( cos ` ( _pi / 2 ) ) = 0 |
63 |
62
|
oveq1i |
|- ( ( cos ` ( _pi / 2 ) ) ^ 2 ) = ( 0 ^ 2 ) |
64 |
|
sq0 |
|- ( 0 ^ 2 ) = 0 |
65 |
63 64
|
eqtri |
|- ( ( cos ` ( _pi / 2 ) ) ^ 2 ) = 0 |
66 |
65
|
oveq2i |
|- ( ( ( sin ` ( _pi / 2 ) ) ^ 2 ) + ( ( cos ` ( _pi / 2 ) ) ^ 2 ) ) = ( ( ( sin ` ( _pi / 2 ) ) ^ 2 ) + 0 ) |
67 |
|
sincossq |
|- ( ( _pi / 2 ) e. CC -> ( ( ( sin ` ( _pi / 2 ) ) ^ 2 ) + ( ( cos ` ( _pi / 2 ) ) ^ 2 ) ) = 1 ) |
68 |
46 67
|
ax-mp |
|- ( ( ( sin ` ( _pi / 2 ) ) ^ 2 ) + ( ( cos ` ( _pi / 2 ) ) ^ 2 ) ) = 1 |
69 |
66 68
|
eqtr3i |
|- ( ( ( sin ` ( _pi / 2 ) ) ^ 2 ) + 0 ) = 1 |
70 |
53
|
sqcli |
|- ( ( sin ` ( _pi / 2 ) ) ^ 2 ) e. CC |
71 |
70
|
addid1i |
|- ( ( ( sin ` ( _pi / 2 ) ) ^ 2 ) + 0 ) = ( ( sin ` ( _pi / 2 ) ) ^ 2 ) |
72 |
35 69 71
|
3eqtr2ri |
|- ( ( sin ` ( _pi / 2 ) ) ^ 2 ) = ( 1 ^ 2 ) |
73 |
|
ax-1cn |
|- 1 e. CC |
74 |
53 73
|
sqeqori |
|- ( ( ( sin ` ( _pi / 2 ) ) ^ 2 ) = ( 1 ^ 2 ) <-> ( ( sin ` ( _pi / 2 ) ) = 1 \/ ( sin ` ( _pi / 2 ) ) = -u 1 ) ) |
75 |
72 74
|
mpbi |
|- ( ( sin ` ( _pi / 2 ) ) = 1 \/ ( sin ` ( _pi / 2 ) ) = -u 1 ) |
76 |
75
|
ori |
|- ( -. ( sin ` ( _pi / 2 ) ) = 1 -> ( sin ` ( _pi / 2 ) ) = -u 1 ) |
77 |
34 76
|
mt3 |
|- ( sin ` ( _pi / 2 ) ) = 1 |
78 |
77 62
|
pm3.2i |
|- ( ( sin ` ( _pi / 2 ) ) = 1 /\ ( cos ` ( _pi / 2 ) ) = 0 ) |