Metamath Proof Explorer


Theorem sinneg

Description: The sine of a negative is the negative of the sine. (Contributed by NM, 30-Apr-2005)

Ref Expression
Assertion sinneg AsinA=sinA

Proof

Step Hyp Ref Expression
1 negcl AA
2 sinval AsinA=eiAeiA2i
3 1 2 syl AsinA=eiAeiA2i
4 sinval AsinA=eiAeiA2i
5 4 negeqd AsinA=eiAeiA2i
6 ax-icn i
7 mulcl iAiA
8 6 7 mpan AiA
9 efcl iAeiA
10 8 9 syl AeiA
11 negicn i
12 mulcl iAiA
13 11 12 mpan AiA
14 efcl iAeiA
15 13 14 syl AeiA
16 10 15 subcld AeiAeiA
17 2mulicn 2i
18 2muline0 2i0
19 divneg eiAeiA2i2i0eiAeiA2i=eiAeiA2i
20 17 18 19 mp3an23 eiAeiAeiAeiA2i=eiAeiA2i
21 16 20 syl AeiAeiA2i=eiAeiA2i
22 5 21 eqtrd AsinA=eiAeiA2i
23 mulneg12 iAiA=iA
24 6 23 mpan AiA=iA
25 24 eqcomd AiA=iA
26 25 fveq2d AeiA=eiA
27 mul2neg iAiA=iA
28 6 27 mpan AiA=iA
29 28 fveq2d AeiA=eiA
30 26 29 oveq12d AeiAeiA=eiAeiA
31 10 15 negsubdi2d AeiAeiA=eiAeiA
32 30 31 eqtr4d AeiAeiA=eiAeiA
33 32 oveq1d AeiAeiA2i=eiAeiA2i
34 22 33 eqtr4d AsinA=eiAeiA2i
35 3 34 eqtr4d AsinA=sinA