Metamath Proof Explorer


Theorem sltsubsubbd

Description: Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 6-Feb-2025)

Ref Expression
Hypotheses sltsubsubbd.1 φANo
sltsubsubbd.2 φBNo
sltsubsubbd.3 φCNo
sltsubsubbd.4 φDNo
Assertion sltsubsubbd Could not format assertion : No typesetting found for |- ( ph -> ( ( A -s C ) ( A -s B )

Proof

Step Hyp Ref Expression
1 sltsubsubbd.1 φANo
2 sltsubsubbd.2 φBNo
3 sltsubsubbd.3 φCNo
4 sltsubsubbd.4 φDNo
5 npcans Could not format ( ( A e. No /\ C e. No ) -> ( ( A -s C ) +s C ) = A ) : No typesetting found for |- ( ( A e. No /\ C e. No ) -> ( ( A -s C ) +s C ) = A ) with typecode |-
6 1 3 5 syl2anc Could not format ( ph -> ( ( A -s C ) +s C ) = A ) : No typesetting found for |- ( ph -> ( ( A -s C ) +s C ) = A ) with typecode |-
7 npcans Could not format ( ( A e. No /\ B e. No ) -> ( ( A -s B ) +s B ) = A ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( ( A -s B ) +s B ) = A ) with typecode |-
8 1 2 7 syl2anc Could not format ( ph -> ( ( A -s B ) +s B ) = A ) : No typesetting found for |- ( ph -> ( ( A -s B ) +s B ) = A ) with typecode |-
9 6 8 eqtr4d Could not format ( ph -> ( ( A -s C ) +s C ) = ( ( A -s B ) +s B ) ) : No typesetting found for |- ( ph -> ( ( A -s C ) +s C ) = ( ( A -s B ) +s B ) ) with typecode |-
10 2 3 addscomd Could not format ( ph -> ( B +s C ) = ( C +s B ) ) : No typesetting found for |- ( ph -> ( B +s C ) = ( C +s B ) ) with typecode |-
11 10 oveq1d Could not format ( ph -> ( ( B +s C ) +s ( -us ` D ) ) = ( ( C +s B ) +s ( -us ` D ) ) ) : No typesetting found for |- ( ph -> ( ( B +s C ) +s ( -us ` D ) ) = ( ( C +s B ) +s ( -us ` D ) ) ) with typecode |-
12 2 4 subsvald Could not format ( ph -> ( B -s D ) = ( B +s ( -us ` D ) ) ) : No typesetting found for |- ( ph -> ( B -s D ) = ( B +s ( -us ` D ) ) ) with typecode |-
13 12 oveq1d Could not format ( ph -> ( ( B -s D ) +s C ) = ( ( B +s ( -us ` D ) ) +s C ) ) : No typesetting found for |- ( ph -> ( ( B -s D ) +s C ) = ( ( B +s ( -us ` D ) ) +s C ) ) with typecode |-
14 4 negscld Could not format ( ph -> ( -us ` D ) e. No ) : No typesetting found for |- ( ph -> ( -us ` D ) e. No ) with typecode |-
15 2 14 3 adds32d Could not format ( ph -> ( ( B +s ( -us ` D ) ) +s C ) = ( ( B +s C ) +s ( -us ` D ) ) ) : No typesetting found for |- ( ph -> ( ( B +s ( -us ` D ) ) +s C ) = ( ( B +s C ) +s ( -us ` D ) ) ) with typecode |-
16 13 15 eqtrd Could not format ( ph -> ( ( B -s D ) +s C ) = ( ( B +s C ) +s ( -us ` D ) ) ) : No typesetting found for |- ( ph -> ( ( B -s D ) +s C ) = ( ( B +s C ) +s ( -us ` D ) ) ) with typecode |-
17 3 4 subsvald Could not format ( ph -> ( C -s D ) = ( C +s ( -us ` D ) ) ) : No typesetting found for |- ( ph -> ( C -s D ) = ( C +s ( -us ` D ) ) ) with typecode |-
18 17 oveq1d Could not format ( ph -> ( ( C -s D ) +s B ) = ( ( C +s ( -us ` D ) ) +s B ) ) : No typesetting found for |- ( ph -> ( ( C -s D ) +s B ) = ( ( C +s ( -us ` D ) ) +s B ) ) with typecode |-
19 3 14 2 adds32d Could not format ( ph -> ( ( C +s ( -us ` D ) ) +s B ) = ( ( C +s B ) +s ( -us ` D ) ) ) : No typesetting found for |- ( ph -> ( ( C +s ( -us ` D ) ) +s B ) = ( ( C +s B ) +s ( -us ` D ) ) ) with typecode |-
20 18 19 eqtrd Could not format ( ph -> ( ( C -s D ) +s B ) = ( ( C +s B ) +s ( -us ` D ) ) ) : No typesetting found for |- ( ph -> ( ( C -s D ) +s B ) = ( ( C +s B ) +s ( -us ` D ) ) ) with typecode |-
21 11 16 20 3eqtr4d Could not format ( ph -> ( ( B -s D ) +s C ) = ( ( C -s D ) +s B ) ) : No typesetting found for |- ( ph -> ( ( B -s D ) +s C ) = ( ( C -s D ) +s B ) ) with typecode |-
22 9 21 breq12d Could not format ( ph -> ( ( ( A -s C ) +s C ) ( ( A -s B ) +s B ) ( ( ( A -s C ) +s C ) ( ( A -s B ) +s B )
23 1 3 subscld Could not format ( ph -> ( A -s C ) e. No ) : No typesetting found for |- ( ph -> ( A -s C ) e. No ) with typecode |-
24 2 4 subscld Could not format ( ph -> ( B -s D ) e. No ) : No typesetting found for |- ( ph -> ( B -s D ) e. No ) with typecode |-
25 23 24 3 sltadd1d Could not format ( ph -> ( ( A -s C ) ( ( A -s C ) +s C ) ( ( A -s C ) ( ( A -s C ) +s C )
26 1 2 subscld Could not format ( ph -> ( A -s B ) e. No ) : No typesetting found for |- ( ph -> ( A -s B ) e. No ) with typecode |-
27 3 4 subscld Could not format ( ph -> ( C -s D ) e. No ) : No typesetting found for |- ( ph -> ( C -s D ) e. No ) with typecode |-
28 26 27 2 sltadd1d Could not format ( ph -> ( ( A -s B ) ( ( A -s B ) +s B ) ( ( A -s B ) ( ( A -s B ) +s B )
29 22 25 28 3bitr4d Could not format ( ph -> ( ( A -s C ) ( A -s B ) ( ( A -s C ) ( A -s B )