Metamath Proof Explorer


Theorem sltval

Description: The value of the surreal less than relationship. (Contributed by Scott Fenton, 14-Jun-2011)

Ref Expression
Assertion sltval A No B No A < s B x On y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x

Proof

Step Hyp Ref Expression
1 eleq1 f = A f No A No
2 1 anbi1d f = A f No g No A No g No
3 fveq1 f = A f y = A y
4 3 eqeq1d f = A f y = g y A y = g y
5 4 ralbidv f = A y x f y = g y y x A y = g y
6 fveq1 f = A f x = A x
7 6 breq1d f = A f x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 g x A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 g x
8 5 7 anbi12d f = A y x f y = g y f x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 g x y x A y = g y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 g x
9 8 rexbidv f = A x On y x f y = g y f x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 g x x On y x A y = g y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 g x
10 2 9 anbi12d f = A f No g No x On y x f y = g y f x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 g x A No g No x On y x A y = g y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 g x
11 eleq1 g = B g No B No
12 11 anbi2d g = B A No g No A No B No
13 fveq1 g = B g y = B y
14 13 eqeq2d g = B A y = g y A y = B y
15 14 ralbidv g = B y x A y = g y y x A y = B y
16 fveq1 g = B g x = B x
17 16 breq2d g = B A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 g x A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
18 15 17 anbi12d g = B y x A y = g y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 g x y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
19 18 rexbidv g = B x On y x A y = g y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 g x x On y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
20 12 19 anbi12d g = B A No g No x On y x A y = g y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 g x A No B No x On y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
21 df-slt < s = f g | f No g No x On y x f y = g y f x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 g x
22 10 20 21 brabg A No B No A < s B A No B No x On y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x
23 22 bianabs A No B No A < s B x On y x A y = B y A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 B x