Metamath Proof Explorer


Theorem sltval

Description: The value of the surreal less-than relation. (Contributed by Scott Fenton, 14-Jun-2011)

Ref Expression
Assertion sltval ANoBNoA<sBxOnyxAy=ByAx1𝑜1𝑜2𝑜2𝑜Bx

Proof

Step Hyp Ref Expression
1 eleq1 f=AfNoANo
2 1 anbi1d f=AfNogNoANogNo
3 fveq1 f=Afy=Ay
4 3 eqeq1d f=Afy=gyAy=gy
5 4 ralbidv f=Ayxfy=gyyxAy=gy
6 fveq1 f=Afx=Ax
7 6 breq1d f=Afx1𝑜1𝑜2𝑜2𝑜gxAx1𝑜1𝑜2𝑜2𝑜gx
8 5 7 anbi12d f=Ayxfy=gyfx1𝑜1𝑜2𝑜2𝑜gxyxAy=gyAx1𝑜1𝑜2𝑜2𝑜gx
9 8 rexbidv f=AxOnyxfy=gyfx1𝑜1𝑜2𝑜2𝑜gxxOnyxAy=gyAx1𝑜1𝑜2𝑜2𝑜gx
10 2 9 anbi12d f=AfNogNoxOnyxfy=gyfx1𝑜1𝑜2𝑜2𝑜gxANogNoxOnyxAy=gyAx1𝑜1𝑜2𝑜2𝑜gx
11 eleq1 g=BgNoBNo
12 11 anbi2d g=BANogNoANoBNo
13 fveq1 g=Bgy=By
14 13 eqeq2d g=BAy=gyAy=By
15 14 ralbidv g=ByxAy=gyyxAy=By
16 fveq1 g=Bgx=Bx
17 16 breq2d g=BAx1𝑜1𝑜2𝑜2𝑜gxAx1𝑜1𝑜2𝑜2𝑜Bx
18 15 17 anbi12d g=ByxAy=gyAx1𝑜1𝑜2𝑜2𝑜gxyxAy=ByAx1𝑜1𝑜2𝑜2𝑜Bx
19 18 rexbidv g=BxOnyxAy=gyAx1𝑜1𝑜2𝑜2𝑜gxxOnyxAy=ByAx1𝑜1𝑜2𝑜2𝑜Bx
20 12 19 anbi12d g=BANogNoxOnyxAy=gyAx1𝑜1𝑜2𝑜2𝑜gxANoBNoxOnyxAy=ByAx1𝑜1𝑜2𝑜2𝑜Bx
21 df-slt <s=fg|fNogNoxOnyxfy=gyfx1𝑜1𝑜2𝑜2𝑜gx
22 10 20 21 brabg ANoBNoA<sBANoBNoxOnyxAy=ByAx1𝑜1𝑜2𝑜2𝑜Bx
23 22 bianabs ANoBNoA<sBxOnyxAy=ByAx1𝑜1𝑜2𝑜2𝑜Bx