Metamath Proof Explorer


Theorem smadiadetglem1

Description: Lemma 1 for smadiadetg . (Contributed by AV, 13-Feb-2019)

Ref Expression
Hypotheses smadiadet.a A=NMatR
smadiadet.b B=BaseA
smadiadet.r RCRing
smadiadet.d D=NmaDetR
smadiadet.h E=NKmaDetR
Assertion smadiadetglem1 MBKNSBaseRKMNmatRRepRSKNK×N=KNminMatR1RMKNK×N

Proof

Step Hyp Ref Expression
1 smadiadet.a A=NMatR
2 smadiadet.b B=BaseA
3 smadiadet.r RCRing
4 smadiadet.d D=NmaDetR
5 smadiadet.h E=NKmaDetR
6 mpodifsnif iNK,jNifi=Kifj=KS0RiMj=iNK,jNiMj
7 mpodifsnif iNK,jNifi=Kifj=K1R0RiMj=iNK,jNiMj
8 6 7 eqtr4i iNK,jNifi=Kifj=KS0RiMj=iNK,jNifi=Kifj=K1R0RiMj
9 difss NKN
10 ssid NN
11 9 10 pm3.2i NKNNN
12 resmpo NKNNNiN,jNifi=Kifj=KS0RiMjNK×N=iNK,jNifi=Kifj=KS0RiMj
13 11 12 mp1i MBKNSBaseRiN,jNifi=Kifj=KS0RiMjNK×N=iNK,jNifi=Kifj=KS0RiMj
14 resmpo NKNNNiN,jNifi=Kifj=K1R0RiMjNK×N=iNK,jNifi=Kifj=K1R0RiMj
15 11 14 mp1i MBKNSBaseRiN,jNifi=Kifj=K1R0RiMjNK×N=iNK,jNifi=Kifj=K1R0RiMj
16 8 13 15 3eqtr4a MBKNSBaseRiN,jNifi=Kifj=KS0RiMjNK×N=iN,jNifi=Kifj=K1R0RiMjNK×N
17 simp1 MBKNSBaseRMB
18 simp3 MBKNSBaseRSBaseR
19 simp2 MBKNSBaseRKN
20 eqid NmatRRepR=NmatRRepR
21 eqid 0R=0R
22 1 2 20 21 marrepval MBSBaseRKNKNKMNmatRRepRSK=iN,jNifi=Kifj=KS0RiMj
23 17 18 19 19 22 syl22anc MBKNSBaseRKMNmatRRepRSK=iN,jNifi=Kifj=KS0RiMj
24 23 reseq1d MBKNSBaseRKMNmatRRepRSKNK×N=iN,jNifi=Kifj=KS0RiMjNK×N
25 crngring RCRingRRing
26 eqid BaseR=BaseR
27 eqid 1R=1R
28 26 27 ringidcl RRing1RBaseR
29 25 28 syl RCRing1RBaseR
30 3 29 mp1i MBKNSBaseR1RBaseR
31 1 2 20 21 marrepval MB1RBaseRKNKNKMNmatRRepR1RK=iN,jNifi=Kifj=K1R0RiMj
32 17 30 19 19 31 syl22anc MBKNSBaseRKMNmatRRepR1RK=iN,jNifi=Kifj=K1R0RiMj
33 32 reseq1d MBKNSBaseRKMNmatRRepR1RKNK×N=iN,jNifi=Kifj=K1R0RiMjNK×N
34 16 24 33 3eqtr4d MBKNSBaseRKMNmatRRepRSKNK×N=KMNmatRRepR1RKNK×N
35 3 25 ax-mp RRing
36 1 2 27 minmar1marrep RRingMBNminMatR1RM=MNmatRRepR1R
37 35 17 36 sylancr MBKNSBaseRNminMatR1RM=MNmatRRepR1R
38 37 eqcomd MBKNSBaseRMNmatRRepR1R=NminMatR1RM
39 38 oveqd MBKNSBaseRKMNmatRRepR1RK=KNminMatR1RMK
40 39 reseq1d MBKNSBaseRKMNmatRRepR1RKNK×N=KNminMatR1RMKNK×N
41 34 40 eqtrd MBKNSBaseRKMNmatRRepRSKNK×N=KNminMatR1RMKNK×N