Description: Lemma 1 for smadiadetg . (Contributed by AV, 13-Feb-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smadiadet.a | |
|
smadiadet.b | |
||
smadiadet.r | |
||
smadiadet.d | |
||
smadiadet.h | |
||
Assertion | smadiadetglem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smadiadet.a | |
|
2 | smadiadet.b | |
|
3 | smadiadet.r | |
|
4 | smadiadet.d | |
|
5 | smadiadet.h | |
|
6 | mpodifsnif | |
|
7 | mpodifsnif | |
|
8 | 6 7 | eqtr4i | |
9 | difss | |
|
10 | ssid | |
|
11 | 9 10 | pm3.2i | |
12 | resmpo | |
|
13 | 11 12 | mp1i | |
14 | resmpo | |
|
15 | 11 14 | mp1i | |
16 | 8 13 15 | 3eqtr4a | |
17 | simp1 | |
|
18 | simp3 | |
|
19 | simp2 | |
|
20 | eqid | |
|
21 | eqid | |
|
22 | 1 2 20 21 | marrepval | |
23 | 17 18 19 19 22 | syl22anc | |
24 | 23 | reseq1d | |
25 | crngring | |
|
26 | eqid | |
|
27 | eqid | |
|
28 | 26 27 | ringidcl | |
29 | 25 28 | syl | |
30 | 3 29 | mp1i | |
31 | 1 2 20 21 | marrepval | |
32 | 17 30 19 19 31 | syl22anc | |
33 | 32 | reseq1d | |
34 | 16 24 33 | 3eqtr4d | |
35 | 3 25 | ax-mp | |
36 | 1 2 27 | minmar1marrep | |
37 | 35 17 36 | sylancr | |
38 | 37 | eqcomd | |
39 | 38 | oveqd | |
40 | 39 | reseq1d | |
41 | 34 40 | eqtrd | |