Metamath Proof Explorer


Theorem smfmulc1

Description: A sigma-measurable function multiplied by a constant is sigma-measurable. Proposition 121E (c) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfmulc1.x x φ
smfmulc1.s φ S SAlg
smfmulc1.a φ A V
smfmulc1.b φ x A B
smfmulc1.c φ C
smfmulc1.m φ x A B SMblFn S
Assertion smfmulc1 φ x A C B SMblFn S

Proof

Step Hyp Ref Expression
1 smfmulc1.x x φ
2 smfmulc1.s φ S SAlg
3 smfmulc1.a φ A V
4 smfmulc1.b φ x A B
5 smfmulc1.c φ C
6 smfmulc1.m φ x A B SMblFn S
7 inidm A A = A
8 7 eqcomi A = A A
9 8 mpteq1i x A C B = x A A C B
10 9 a1i φ x A C B = x A A C B
11 5 adantr φ x A C
12 eqid x A B = x A B
13 1 12 4 dmmptdf φ dom x A B = A
14 13 eqcomd φ A = dom x A B
15 eqid dom x A B = dom x A B
16 2 6 15 smfdmss φ dom x A B S
17 14 16 eqsstrd φ A S
18 eqid x A C = x A C
19 1 2 17 5 18 smfconst φ x A C SMblFn S
20 1 2 3 11 4 19 6 smfmul φ x A A C B SMblFn S
21 10 20 eqeltrd φ x A C B SMblFn S