Metamath Proof Explorer


Theorem smfpimltmpt

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpimltmpt.x xφ
smfpimltmpt.s φSSAlg
smfpimltmpt.b φxABV
smfpimltmpt.f φxABSMblFnS
smfpimltmpt.r φR
Assertion smfpimltmpt φxA|B<RS𝑡A

Proof

Step Hyp Ref Expression
1 smfpimltmpt.x xφ
2 smfpimltmpt.s φSSAlg
3 smfpimltmpt.b φxABV
4 smfpimltmpt.f φxABSMblFnS
5 smfpimltmpt.r φR
6 nfmpt1 _xxAB
7 eqid domxAB=domxAB
8 6 2 4 7 5 smfpreimaltf φxdomxAB|xABx<RS𝑡domxAB
9 eqid xAB=xAB
10 1 9 3 dmmptdf φdomxAB=A
11 6 nfdm _xdomxAB
12 nfcv _xA
13 11 12 rabeqf domxAB=AxdomxAB|xABx<R=xA|xABx<R
14 10 13 syl φxdomxAB|xABx<R=xA|xABx<R
15 9 a1i φxAB=xAB
16 15 3 fvmpt2d φxAxABx=B
17 16 breq1d φxAxABx<RB<R
18 1 17 rabbida φxA|xABx<R=xA|B<R
19 eqidd φxA|B<R=xA|B<R
20 14 18 19 3eqtrrd φxA|B<R=xdomxAB|xABx<R
21 10 eqcomd φA=domxAB
22 21 oveq2d φS𝑡A=S𝑡domxAB
23 20 22 eleq12d φxA|B<RS𝑡AxdomxAB|xABx<RS𝑡domxAB
24 8 23 mpbird φxA|B<RS𝑡A