Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smfpimltmpt.x | |
|
smfpimltmpt.s | |
||
smfpimltmpt.b | |
||
smfpimltmpt.f | |
||
smfpimltmpt.r | |
||
Assertion | smfpimltmpt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfpimltmpt.x | |
|
2 | smfpimltmpt.s | |
|
3 | smfpimltmpt.b | |
|
4 | smfpimltmpt.f | |
|
5 | smfpimltmpt.r | |
|
6 | nfmpt1 | |
|
7 | eqid | |
|
8 | 6 2 4 7 5 | smfpreimaltf | |
9 | eqid | |
|
10 | 1 9 3 | dmmptdf | |
11 | 6 | nfdm | |
12 | nfcv | |
|
13 | 11 12 | rabeqf | |
14 | 10 13 | syl | |
15 | 9 | a1i | |
16 | 15 3 | fvmpt2d | |
17 | 16 | breq1d | |
18 | 1 17 | rabbida | |
19 | eqidd | |
|
20 | 14 18 19 | 3eqtrrd | |
21 | 10 | eqcomd | |
22 | 21 | oveq2d | |
23 | 20 22 | eleq12d | |
24 | 8 23 | mpbird | |