Metamath Proof Explorer


Theorem smfpreimagt

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpreimagt.s φSSAlg
smfpreimagt.f φFSMblFnS
smfpreimagt.d D=domF
smfpreimagt.a φA
Assertion smfpreimagt φxD|A<FxS𝑡D

Proof

Step Hyp Ref Expression
1 smfpreimagt.s φSSAlg
2 smfpreimagt.f φFSMblFnS
3 smfpreimagt.d D=domF
4 smfpreimagt.a φA
5 1 3 issmfgt φFSMblFnSDSF:DaxD|a<FxS𝑡D
6 2 5 mpbid φDSF:DaxD|a<FxS𝑡D
7 6 simp3d φaxD|a<FxS𝑡D
8 breq1 a=Aa<FxA<Fx
9 8 rabbidv a=AxD|a<Fx=xD|A<Fx
10 9 eleq1d a=AxD|a<FxS𝑡DxD|A<FxS𝑡D
11 10 rspcva AaxD|a<FxS𝑡DxD|A<FxS𝑡D
12 4 7 11 syl2anc φxD|A<FxS𝑡D