Metamath Proof Explorer


Theorem smndex1basss

Description: The modulo function I and the constant functions ( GK ) are endofunctions on NN0 . (Contributed by AV, 12-Feb-2024)

Ref Expression
Hypotheses smndex1ibas.m No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
smndex1ibas.n N
smndex1ibas.i I=x0xmodN
smndex1ibas.g G=n0..^Nx0n
smndex1mgm.b B=In0..^NGn
Assertion smndex1basss BBaseM

Proof

Step Hyp Ref Expression
1 smndex1ibas.m Could not format M = ( EndoFMnd ` NN0 ) : No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
2 smndex1ibas.n N
3 smndex1ibas.i I=x0xmodN
4 smndex1ibas.g G=n0..^Nx0n
5 smndex1mgm.b B=In0..^NGn
6 5 eleq2i bBbIn0..^NGn
7 fveq2 n=kGn=Gk
8 7 sneqd n=kGn=Gk
9 8 cbviunv n0..^NGn=k0..^NGk
10 9 uneq2i In0..^NGn=Ik0..^NGk
11 10 eleq2i bIn0..^NGnbIk0..^NGk
12 6 11 bitri bBbIk0..^NGk
13 elun bIk0..^NGkbIbk0..^NGk
14 velsn bIb=I
15 eliun bk0..^NGkk0..^NbGk
16 14 15 orbi12i bIbk0..^NGkb=Ik0..^NbGk
17 12 13 16 3bitri bBb=Ik0..^NbGk
18 1 2 3 smndex1ibas IBaseM
19 eleq1 b=IbBaseMIBaseM
20 18 19 mpbiri b=IbBaseM
21 1 2 3 4 smndex1gbas k0..^NGkBaseM
22 21 adantr k0..^NbGkGkBaseM
23 elsni bGkb=Gk
24 23 eleq1d bGkbBaseMGkBaseM
25 24 adantl k0..^NbGkbBaseMGkBaseM
26 22 25 mpbird k0..^NbGkbBaseM
27 26 rexlimiva k0..^NbGkbBaseM
28 20 27 jaoi b=Ik0..^NbGkbBaseM
29 17 28 sylbi bBbBaseM
30 29 ssriv BBaseM