Metamath Proof Explorer


Theorem sprsymrelf

Description: The mapping F is a function from the subsets of the set of pairs over a fixed set V into the symmetric relations R on the fixed set V . (Contributed by AV, 19-Nov-2021)

Ref Expression
Hypotheses sprsymrelf.p P=𝒫PairsV
sprsymrelf.r R=r𝒫V×V|xVyVxryyrx
sprsymrelf.f F=pPxy|cpc=xy
Assertion sprsymrelf F:PR

Proof

Step Hyp Ref Expression
1 sprsymrelf.p P=𝒫PairsV
2 sprsymrelf.r R=r𝒫V×V|xVyVxryyrx
3 sprsymrelf.f F=pPxy|cpc=xy
4 sprsymrelfvlem pPairsVxy|cpc=xy𝒫V×V
5 prcom xy=yx
6 5 a1i pPairsVxVyVcpxy=yx
7 6 eqeq2d pPairsVxVyVcpc=xyc=yx
8 7 rexbidva pPairsVxVyVcpc=xycpc=yx
9 df-br xxy|cpc=xyyxyxy|cpc=xy
10 opabidw xyxy|cpc=xycpc=xy
11 9 10 bitri xxy|cpc=xyycpc=xy
12 vex yV
13 vex xV
14 preq12 a=yb=xab=yx
15 14 eqeq2d a=yb=xc=abc=yx
16 15 rexbidv a=yb=xcpc=abcpc=yx
17 preq12 x=ay=bxy=ab
18 17 eqeq2d x=ay=bc=xyc=ab
19 18 rexbidv x=ay=bcpc=xycpc=ab
20 19 cbvopabv xy|cpc=xy=ab|cpc=ab
21 12 13 16 20 braba yxy|cpc=xyxcpc=yx
22 8 11 21 3bitr4g pPairsVxVyVxxy|cpc=xyyyxy|cpc=xyx
23 22 ralrimivva pPairsVxVyVxxy|cpc=xyyyxy|cpc=xyx
24 4 23 jca pPairsVxy|cpc=xy𝒫V×VxVyVxxy|cpc=xyyyxy|cpc=xyx
25 1 eleq2i pPp𝒫PairsV
26 vex pV
27 26 elpw p𝒫PairsVpPairsV
28 25 27 bitri pPpPairsV
29 nfopab1 _xxy|cpc=xy
30 29 nfeq2 xr=xy|cpc=xy
31 nfopab2 _yxy|cpc=xy
32 31 nfeq2 yr=xy|cpc=xy
33 breq r=xy|cpc=xyxryxxy|cpc=xyy
34 breq r=xy|cpc=xyyrxyxy|cpc=xyx
35 33 34 bibi12d r=xy|cpc=xyxryyrxxxy|cpc=xyyyxy|cpc=xyx
36 32 35 ralbid r=xy|cpc=xyyVxryyrxyVxxy|cpc=xyyyxy|cpc=xyx
37 30 36 ralbid r=xy|cpc=xyxVyVxryyrxxVyVxxy|cpc=xyyyxy|cpc=xyx
38 37 elrab xy|cpc=xyr𝒫V×V|xVyVxryyrxxy|cpc=xy𝒫V×VxVyVxxy|cpc=xyyyxy|cpc=xyx
39 24 28 38 3imtr4i pPxy|cpc=xyr𝒫V×V|xVyVxryyrx
40 39 2 eleqtrrdi pPxy|cpc=xyR
41 3 40 fmpti F:PR