Description: The mapping F is a function from the subsets of the set of pairs over a fixed set V into the symmetric relations R on the fixed set V . (Contributed by AV, 19-Nov-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sprsymrelf.p | |
|
sprsymrelf.r | |
||
sprsymrelf.f | |
||
Assertion | sprsymrelf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sprsymrelf.p | |
|
2 | sprsymrelf.r | |
|
3 | sprsymrelf.f | |
|
4 | sprsymrelfvlem | |
|
5 | prcom | |
|
6 | 5 | a1i | |
7 | 6 | eqeq2d | |
8 | 7 | rexbidva | |
9 | df-br | |
|
10 | opabidw | |
|
11 | 9 10 | bitri | |
12 | vex | |
|
13 | vex | |
|
14 | preq12 | |
|
15 | 14 | eqeq2d | |
16 | 15 | rexbidv | |
17 | preq12 | |
|
18 | 17 | eqeq2d | |
19 | 18 | rexbidv | |
20 | 19 | cbvopabv | |
21 | 12 13 16 20 | braba | |
22 | 8 11 21 | 3bitr4g | |
23 | 22 | ralrimivva | |
24 | 4 23 | jca | |
25 | 1 | eleq2i | |
26 | vex | |
|
27 | 26 | elpw | |
28 | 25 27 | bitri | |
29 | nfopab1 | |
|
30 | 29 | nfeq2 | |
31 | nfopab2 | |
|
32 | 31 | nfeq2 | |
33 | breq | |
|
34 | breq | |
|
35 | 33 34 | bibi12d | |
36 | 32 35 | ralbid | |
37 | 30 36 | ralbid | |
38 | 37 | elrab | |
39 | 24 28 38 | 3imtr4i | |
40 | 39 2 | eleqtrrdi | |
41 | 3 40 | fmpti | |