Metamath Proof Explorer


Theorem sqrtdiv

Description: Square root distributes over division. (Contributed by Mario Carneiro, 5-May-2016)

Ref Expression
Assertion sqrtdiv A0AB+AB=AB

Proof

Step Hyp Ref Expression
1 rerpdivcl AB+AB
2 1 adantlr A0AB+AB
3 elrp B+B0<B
4 divge0 A0AB0<B0AB
5 3 4 sylan2b A0AB+0AB
6 resqrtcl AB0ABAB
7 2 5 6 syl2anc A0AB+AB
8 7 recnd A0AB+AB
9 rpsqrtcl B+B+
10 9 adantl A0AB+B+
11 10 rpcnd A0AB+B
12 10 rpne0d A0AB+B0
13 8 11 12 divcan4d A0AB+ABBB=AB
14 rprege0 B+B0B
15 14 adantl A0AB+B0B
16 sqrtmul AB0ABB0BABB=ABB
17 2 5 15 16 syl21anc A0AB+ABB=ABB
18 simpll A0AB+A
19 18 recnd A0AB+A
20 rpcn B+B
21 20 adantl A0AB+B
22 rpne0 B+B0
23 22 adantl A0AB+B0
24 19 21 23 divcan1d A0AB+ABB=A
25 24 fveq2d A0AB+ABB=A
26 17 25 eqtr3d A0AB+ABB=A
27 26 oveq1d A0AB+ABBB=AB
28 13 27 eqtr3d A0AB+AB=AB