| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rerpdivcl |
|
| 2 |
1
|
adantlr |
|
| 3 |
|
elrp |
|
| 4 |
|
divge0 |
|
| 5 |
3 4
|
sylan2b |
|
| 6 |
|
resqrtcl |
|
| 7 |
2 5 6
|
syl2anc |
|
| 8 |
7
|
recnd |
|
| 9 |
|
rpsqrtcl |
|
| 10 |
9
|
adantl |
|
| 11 |
10
|
rpcnd |
|
| 12 |
10
|
rpne0d |
|
| 13 |
8 11 12
|
divcan4d |
|
| 14 |
|
rprege0 |
|
| 15 |
14
|
adantl |
|
| 16 |
|
sqrtmul |
|
| 17 |
2 5 15 16
|
syl21anc |
|
| 18 |
|
simpll |
|
| 19 |
18
|
recnd |
|
| 20 |
|
rpcn |
|
| 21 |
20
|
adantl |
|
| 22 |
|
rpne0 |
|
| 23 |
22
|
adantl |
|
| 24 |
19 21 23
|
divcan1d |
|
| 25 |
24
|
fveq2d |
|
| 26 |
17 25
|
eqtr3d |
|
| 27 |
26
|
oveq1d |
|
| 28 |
13 27
|
eqtr3d |
|