| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elex |  | 
						
							| 2 | 1 | adantr |  | 
						
							| 3 |  | fveq2 |  | 
						
							| 4 | 3 | pweqd |  | 
						
							| 5 |  | id |  | 
						
							| 6 |  | oveq1 |  | 
						
							| 7 | 6 | opeq2d |  | 
						
							| 8 | 5 7 | oveq12d |  | 
						
							| 9 |  | fveq2 |  | 
						
							| 10 | 9 | opeq2d |  | 
						
							| 11 | 8 10 | oveq12d |  | 
						
							| 12 | 9 | opeq2d |  | 
						
							| 13 | 11 12 | oveq12d |  | 
						
							| 14 | 4 13 | mpteq12dv |  | 
						
							| 15 |  | df-sra |  | 
						
							| 16 |  | fvex |  | 
						
							| 17 | 16 | pwex |  | 
						
							| 18 | 17 | mptex |  | 
						
							| 19 | 14 15 18 | fvmpt |  | 
						
							| 20 | 2 19 | syl |  | 
						
							| 21 |  | simpr |  | 
						
							| 22 | 21 | oveq2d |  | 
						
							| 23 | 22 | opeq2d |  | 
						
							| 24 | 23 | oveq2d |  | 
						
							| 25 | 24 | oveq1d |  | 
						
							| 26 | 25 | oveq1d |  | 
						
							| 27 |  | simpr |  | 
						
							| 28 | 16 | elpw2 |  | 
						
							| 29 | 27 28 | sylibr |  | 
						
							| 30 |  | ovexd |  | 
						
							| 31 | 20 26 29 30 | fvmptd |  |