Metamath Proof Explorer


Theorem sravscaOLD

Description: Obsolete proof of sravsca as of 12-Nov-2024. The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses srapart.a φ A = subringAlg W S
srapart.s φ S Base W
Assertion sravscaOLD φ W = A

Proof

Step Hyp Ref Expression
1 srapart.a φ A = subringAlg W S
2 srapart.s φ S Base W
3 ovex W sSet Scalar ndx W 𝑠 S V
4 fvex W V
5 vscaid 𝑠 = Slot ndx
6 5 setsid W sSet Scalar ndx W 𝑠 S V W V W = W sSet Scalar ndx W 𝑠 S sSet ndx W
7 3 4 6 mp2an W = W sSet Scalar ndx W 𝑠 S sSet ndx W
8 6re 6
9 6lt8 6 < 8
10 8 9 ltneii 6 8
11 vscandx ndx = 6
12 ipndx 𝑖 ndx = 8
13 11 12 neeq12i ndx 𝑖 ndx 6 8
14 10 13 mpbir ndx 𝑖 ndx
15 5 14 setsnid W sSet Scalar ndx W 𝑠 S sSet ndx W = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
16 7 15 eqtri W = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
17 1 adantl W V φ A = subringAlg W S
18 sraval W V S Base W subringAlg W S = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
19 2 18 sylan2 W V φ subringAlg W S = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
20 17 19 eqtrd W V φ A = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
21 20 fveq2d W V φ A = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
22 16 21 eqtr4id W V φ W = A
23 5 str0 =
24 fvprc ¬ W V W =
25 24 adantr ¬ W V φ W =
26 fv2prc ¬ W V subringAlg W S =
27 1 26 sylan9eqr ¬ W V φ A =
28 27 fveq2d ¬ W V φ A =
29 23 25 28 3eqtr4a ¬ W V φ W = A
30 22 29 pm2.61ian φ W = A