Metamath Proof Explorer


Theorem srhmsubclem2

Description: Lemma 2 for srhmsubc . (Contributed by AV, 19-Feb-2020)

Ref Expression
Hypotheses srhmsubc.s rSrRing
srhmsubc.c C=US
Assertion srhmsubclem2 UVXCXBaseRingCatU

Proof

Step Hyp Ref Expression
1 srhmsubc.s rSrRing
2 srhmsubc.c C=US
3 1 2 srhmsubclem1 XCXURing
4 3 adantl UVXCXURing
5 eqid RingCatU=RingCatU
6 eqid BaseRingCatU=BaseRingCatU
7 id UVUV
8 5 6 7 ringcbas UVBaseRingCatU=URing
9 8 adantr UVXCBaseRingCatU=URing
10 4 9 eleqtrrd UVXCXBaseRingCatU