Description: Dedekind finite sets have Dedekind finite subsets. (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 6-May-2015) (Revised by Mario Carneiro, 16-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ssfin4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll | |
|
2 | pssss | |
|
3 | simpr | |
|
4 | 2 3 | sylan9ssr | |
5 | difssd | |
|
6 | 4 5 | unssd | |
7 | pssnel | |
|
8 | 7 | adantl | |
9 | simpllr | |
|
10 | simprl | |
|
11 | 9 10 | sseldd | |
12 | simprr | |
|
13 | elndif | |
|
14 | 13 | ad2antrl | |
15 | ioran | |
|
16 | elun | |
|
17 | 15 16 | xchnxbir | |
18 | 12 14 17 | sylanbrc | |
19 | nelneq2 | |
|
20 | 11 18 19 | syl2anc | |
21 | eqcom | |
|
22 | 20 21 | sylnib | |
23 | 8 22 | exlimddv | |
24 | dfpss2 | |
|
25 | 6 23 24 | sylanbrc | |
26 | 25 | adantrr | |
27 | simprr | |
|
28 | difexg | |
|
29 | enrefg | |
|
30 | 1 28 29 | 3syl | |
31 | 2 | ad2antrl | |
32 | ssinss1 | |
|
33 | 31 32 | syl | |
34 | inssdif0 | |
|
35 | 33 34 | sylib | |
36 | disjdif | |
|
37 | 35 36 | jctir | |
38 | unen | |
|
39 | 27 30 37 38 | syl21anc | |
40 | simplr | |
|
41 | undif | |
|
42 | 40 41 | sylib | |
43 | 39 42 | breqtrd | |
44 | fin4i | |
|
45 | 26 43 44 | syl2anc | |
46 | 1 45 | pm2.65da | |
47 | 46 | nexdv | |
48 | ssexg | |
|
49 | 48 | ancoms | |
50 | isfin4 | |
|
51 | 49 50 | syl | |
52 | 47 51 | mpbird | |