Metamath Proof Explorer


Theorem ssfin4

Description: Dedekind finite sets have Dedekind finite subsets. (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 6-May-2015) (Revised by Mario Carneiro, 16-May-2015)

Ref Expression
Assertion ssfin4 AFinIVBABFinIV

Proof

Step Hyp Ref Expression
1 simpll AFinIVBAxBxBAFinIV
2 pssss xBxB
3 simpr AFinIVBABA
4 2 3 sylan9ssr AFinIVBAxBxA
5 difssd AFinIVBAxBABA
6 4 5 unssd AFinIVBAxBxABA
7 pssnel xBccB¬cx
8 7 adantl AFinIVBAxBccB¬cx
9 simpllr AFinIVBAxBcB¬cxBA
10 simprl AFinIVBAxBcB¬cxcB
11 9 10 sseldd AFinIVBAxBcB¬cxcA
12 simprr AFinIVBAxBcB¬cx¬cx
13 elndif cB¬cAB
14 13 ad2antrl AFinIVBAxBcB¬cx¬cAB
15 ioran ¬cxcAB¬cx¬cAB
16 elun cxABcxcAB
17 15 16 xchnxbir ¬cxAB¬cx¬cAB
18 12 14 17 sylanbrc AFinIVBAxBcB¬cx¬cxAB
19 nelneq2 cA¬cxAB¬A=xAB
20 11 18 19 syl2anc AFinIVBAxBcB¬cx¬A=xAB
21 eqcom A=xABxAB=A
22 20 21 sylnib AFinIVBAxBcB¬cx¬xAB=A
23 8 22 exlimddv AFinIVBAxB¬xAB=A
24 dfpss2 xABAxABA¬xAB=A
25 6 23 24 sylanbrc AFinIVBAxBxABA
26 25 adantrr AFinIVBAxBxBxABA
27 simprr AFinIVBAxBxBxB
28 difexg AFinIVABV
29 enrefg ABVABAB
30 1 28 29 3syl AFinIVBAxBxBABAB
31 2 ad2antrl AFinIVBAxBxBxB
32 ssinss1 xBxAB
33 31 32 syl AFinIVBAxBxBxAB
34 inssdif0 xABxAB=
35 33 34 sylib AFinIVBAxBxBxAB=
36 disjdif BAB=
37 35 36 jctir AFinIVBAxBxBxAB=BAB=
38 unen xBABABxAB=BAB=xABBAB
39 27 30 37 38 syl21anc AFinIVBAxBxBxABBAB
40 simplr AFinIVBAxBxBBA
41 undif BABAB=A
42 40 41 sylib AFinIVBAxBxBBAB=A
43 39 42 breqtrd AFinIVBAxBxBxABA
44 fin4i xABAxABA¬AFinIV
45 26 43 44 syl2anc AFinIVBAxBxB¬AFinIV
46 1 45 pm2.65da AFinIVBA¬xBxB
47 46 nexdv AFinIVBA¬xxBxB
48 ssexg BAAFinIVBV
49 48 ancoms AFinIVBABV
50 isfin4 BVBFinIV¬xxBxB
51 49 50 syl AFinIVBABFinIV¬xxBxB
52 47 51 mpbird AFinIVBABFinIV