Metamath Proof Explorer


Theorem ssltdisj

Description: If A preceeds B , then A and B are disjoint. (Contributed by Scott Fenton, 18-Sep-2024)

Ref Expression
Assertion ssltdisj AsBAB=

Proof

Step Hyp Ref Expression
1 ssltss1 AsBANo
2 1 sselda AsBxAxNo
3 sltirr xNo¬x<sx
4 2 3 syl AsBxA¬x<sx
5 ssltsepc AsBxAxBx<sx
6 5 3expa AsBxAxBx<sx
7 4 6 mtand AsBxA¬xB
8 7 ralrimiva AsBxA¬xB
9 disj AB=xA¬xB
10 8 9 sylibr AsBAB=