Metamath Proof Explorer


Theorem ssnlim

Description: An ordinal subclass of non-limit ordinals is a class of natural numbers. Exercise 7 of TakeutiZaring p. 42. (Contributed by NM, 2-Nov-2004)

Ref Expression
Assertion ssnlim OrdAAxOn|¬LimxAω

Proof

Step Hyp Ref Expression
1 limom Limω
2 ssel AxOn|¬LimxωAωxOn|¬Limx
3 limeq x=ωLimxLimω
4 3 notbid x=ω¬Limx¬Limω
5 4 elrab ωxOn|¬LimxωOn¬Limω
6 5 simprbi ωxOn|¬Limx¬Limω
7 2 6 syl6 AxOn|¬LimxωA¬Limω
8 1 7 mt2i AxOn|¬Limx¬ωA
9 8 adantl OrdAAxOn|¬Limx¬ωA
10 ordom Ordω
11 ordtri1 OrdAOrdωAω¬ωA
12 10 11 mpan2 OrdAAω¬ωA
13 12 adantr OrdAAxOn|¬LimxAω¬ωA
14 9 13 mpbird OrdAAxOn|¬LimxAω