Description: The set of all subspaces of a normed complex vector space. (Contributed by NM, 26-Jan-2008) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sspval.g | |
|
sspval.s | |
||
sspval.n | |
||
sspval.h | |
||
Assertion | sspval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspval.g | |
|
2 | sspval.s | |
|
3 | sspval.n | |
|
4 | sspval.h | |
|
5 | fveq2 | |
|
6 | 5 1 | eqtr4di | |
7 | 6 | sseq2d | |
8 | fveq2 | |
|
9 | 8 2 | eqtr4di | |
10 | 9 | sseq2d | |
11 | fveq2 | |
|
12 | 11 3 | eqtr4di | |
13 | 12 | sseq2d | |
14 | 7 10 13 | 3anbi123d | |
15 | 14 | rabbidv | |
16 | df-ssp | |
|
17 | 1 | fvexi | |
18 | 17 | pwex | |
19 | 2 | fvexi | |
20 | 19 | pwex | |
21 | 18 20 | xpex | |
22 | 3 | fvexi | |
23 | 22 | pwex | |
24 | 21 23 | xpex | |
25 | rabss | |
|
26 | fvex | |
|
27 | 26 | elpw | |
28 | fvex | |
|
29 | 28 | elpw | |
30 | opelxpi | |
|
31 | 27 29 30 | syl2anbr | |
32 | fvex | |
|
33 | 32 | elpw | |
34 | 33 | biimpri | |
35 | opelxpi | |
|
36 | 31 34 35 | syl2an | |
37 | 36 | 3impa | |
38 | eqid | |
|
39 | eqid | |
|
40 | eqid | |
|
41 | 38 39 40 | nvop | |
42 | 41 | eleq1d | |
43 | 37 42 | imbitrrid | |
44 | 25 43 | mprgbir | |
45 | 24 44 | ssexi | |
46 | 15 16 45 | fvmpt | |
47 | 4 46 | eqtrid | |