Metamath Proof Explorer


Theorem sspval

Description: The set of all subspaces of a normed complex vector space. (Contributed by NM, 26-Jan-2008) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses sspval.g G=+vU
sspval.s S=𝑠OLDU
sspval.n N=normCVU
sspval.h H=SubSpU
Assertion sspval UNrmCVecH=wNrmCVec|+vwG𝑠OLDwSnormCVwN

Proof

Step Hyp Ref Expression
1 sspval.g G=+vU
2 sspval.s S=𝑠OLDU
3 sspval.n N=normCVU
4 sspval.h H=SubSpU
5 fveq2 u=U+vu=+vU
6 5 1 eqtr4di u=U+vu=G
7 6 sseq2d u=U+vw+vu+vwG
8 fveq2 u=U𝑠OLDu=𝑠OLDU
9 8 2 eqtr4di u=U𝑠OLDu=S
10 9 sseq2d u=U𝑠OLDw𝑠OLDu𝑠OLDwS
11 fveq2 u=UnormCVu=normCVU
12 11 3 eqtr4di u=UnormCVu=N
13 12 sseq2d u=UnormCVwnormCVunormCVwN
14 7 10 13 3anbi123d u=U+vw+vu𝑠OLDw𝑠OLDunormCVwnormCVu+vwG𝑠OLDwSnormCVwN
15 14 rabbidv u=UwNrmCVec|+vw+vu𝑠OLDw𝑠OLDunormCVwnormCVu=wNrmCVec|+vwG𝑠OLDwSnormCVwN
16 df-ssp SubSp=uNrmCVecwNrmCVec|+vw+vu𝑠OLDw𝑠OLDunormCVwnormCVu
17 1 fvexi GV
18 17 pwex 𝒫GV
19 2 fvexi SV
20 19 pwex 𝒫SV
21 18 20 xpex 𝒫G×𝒫SV
22 3 fvexi NV
23 22 pwex 𝒫NV
24 21 23 xpex 𝒫G×𝒫S×𝒫NV
25 rabss wNrmCVec|+vwG𝑠OLDwSnormCVwN𝒫G×𝒫S×𝒫NwNrmCVec+vwG𝑠OLDwSnormCVwNw𝒫G×𝒫S×𝒫N
26 fvex +vwV
27 26 elpw +vw𝒫G+vwG
28 fvex 𝑠OLDwV
29 28 elpw 𝑠OLDw𝒫S𝑠OLDwS
30 opelxpi +vw𝒫G𝑠OLDw𝒫S+vw𝑠OLDw𝒫G×𝒫S
31 27 29 30 syl2anbr +vwG𝑠OLDwS+vw𝑠OLDw𝒫G×𝒫S
32 fvex normCVwV
33 32 elpw normCVw𝒫NnormCVwN
34 33 biimpri normCVwNnormCVw𝒫N
35 opelxpi +vw𝑠OLDw𝒫G×𝒫SnormCVw𝒫N+vw𝑠OLDwnormCVw𝒫G×𝒫S×𝒫N
36 31 34 35 syl2an +vwG𝑠OLDwSnormCVwN+vw𝑠OLDwnormCVw𝒫G×𝒫S×𝒫N
37 36 3impa +vwG𝑠OLDwSnormCVwN+vw𝑠OLDwnormCVw𝒫G×𝒫S×𝒫N
38 eqid +vw=+vw
39 eqid 𝑠OLDw=𝑠OLDw
40 eqid normCVw=normCVw
41 38 39 40 nvop wNrmCVecw=+vw𝑠OLDwnormCVw
42 41 eleq1d wNrmCVecw𝒫G×𝒫S×𝒫N+vw𝑠OLDwnormCVw𝒫G×𝒫S×𝒫N
43 37 42 imbitrrid wNrmCVec+vwG𝑠OLDwSnormCVwNw𝒫G×𝒫S×𝒫N
44 25 43 mprgbir wNrmCVec|+vwG𝑠OLDwSnormCVwN𝒫G×𝒫S×𝒫N
45 24 44 ssexi wNrmCVec|+vwG𝑠OLDwSnormCVwNV
46 15 16 45 fvmpt UNrmCVecSubSpU=wNrmCVec|+vwG𝑠OLDwSnormCVwN
47 4 46 eqtrid UNrmCVecH=wNrmCVec|+vwG𝑠OLDwSnormCVwN