Metamath Proof Explorer


Theorem sticksstones4

Description: Equinumerosity lemma for sticks and stones. (Contributed by metakunt, 28-Sep-2024)

Ref Expression
Hypotheses sticksstones4.1 φ N 0
sticksstones4.2 φ K 0
sticksstones4.3 B = a 𝒫 1 N | a = K
sticksstones4.4 A = f | f : 1 K 1 N x 1 K y 1 K x < y f x < f y
Assertion sticksstones4 φ A B

Proof

Step Hyp Ref Expression
1 sticksstones4.1 φ N 0
2 sticksstones4.2 φ K 0
3 sticksstones4.3 B = a 𝒫 1 N | a = K
4 sticksstones4.4 A = f | f : 1 K 1 N x 1 K y 1 K x < y f x < f y
5 eqid p A ran p = p A ran p
6 1 2 3 4 5 sticksstones2 φ p A ran p : A 1-1 B
7 1 2 3 4 5 sticksstones3 φ p A ran p : A onto B
8 6 7 jca φ p A ran p : A 1-1 B p A ran p : A onto B
9 df-f1o p A ran p : A 1-1 onto B p A ran p : A 1-1 B p A ran p : A onto B
10 8 9 sylibr φ p A ran p : A 1-1 onto B
11 simpl f : 1 K 1 N x 1 K y 1 K x < y f x < f y f : 1 K 1 N
12 11 a1i φ f : 1 K 1 N x 1 K y 1 K x < y f x < f y f : 1 K 1 N
13 12 ss2abdv φ f | f : 1 K 1 N x 1 K y 1 K x < y f x < f y f | f : 1 K 1 N
14 fzfid φ 1 K Fin
15 fzfid φ 1 N Fin
16 mapex 1 K Fin 1 N Fin f | f : 1 K 1 N V
17 14 15 16 syl2anc φ f | f : 1 K 1 N V
18 ssexg f | f : 1 K 1 N x 1 K y 1 K x < y f x < f y f | f : 1 K 1 N f | f : 1 K 1 N V f | f : 1 K 1 N x 1 K y 1 K x < y f x < f y V
19 13 17 18 syl2anc φ f | f : 1 K 1 N x 1 K y 1 K x < y f x < f y V
20 4 eleq1i A V f | f : 1 K 1 N x 1 K y 1 K x < y f x < f y V
21 19 20 sylibr φ A V
22 21 mptexd φ p A ran p V
23 f1oeq1 g = p A ran p g : A 1-1 onto B p A ran p : A 1-1 onto B
24 23 biimprd g = p A ran p p A ran p : A 1-1 onto B g : A 1-1 onto B
25 24 adantl φ g = p A ran p p A ran p : A 1-1 onto B g : A 1-1 onto B
26 22 25 spcimedv φ p A ran p : A 1-1 onto B g g : A 1-1 onto B
27 10 26 mpd φ g g : A 1-1 onto B
28 bren A B g g : A 1-1 onto B
29 27 28 sylibr φ A B