Metamath Proof Explorer


Theorem stlei

Description: Ordering law for states. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses stle.1 AC
stle.2 BC
Assertion stlei SStatesABSASB

Proof

Step Hyp Ref Expression
1 stle.1 AC
2 stle.2 BC
3 2 chshii BS
4 shococss BSBB
5 3 4 ax-mp BB
6 sstr2 ABBBAB
7 5 6 mpi ABAB
8 2 choccli BC
9 1 8 pm3.2i ACBC
10 7 9 jctil ABACBCAB
11 stj SStatesACBCABSAB=SA+SB
12 10 11 syl5 SStatesABSAB=SA+SB
13 12 imp SStatesABSAB=SA+SB
14 1 8 chjcli ABC
15 stle1 SStatesABCSAB1
16 14 15 mpi SStatesSAB1
17 2 sto1i SStatesSB+SB=1
18 16 17 breqtrrd SStatesSABSB+SB
19 18 adantr SStatesABSABSB+SB
20 13 19 eqbrtrrd SStatesABSA+SBSB+SB
21 stcl SStatesACSA
22 1 21 mpi SStatesSA
23 stcl SStatesBCSB
24 2 23 mpi SStatesSB
25 stcl SStatesBCSB
26 8 25 mpi SStatesSB
27 22 24 26 3jca SStatesSASBSB
28 27 adantr SStatesABSASBSB
29 leadd1 SASBSBSASBSA+SBSB+SB
30 28 29 syl SStatesABSASBSA+SBSB+SB
31 20 30 mpbird SStatesABSASB
32 31 ex SStatesABSASB