Metamath Proof Explorer


Theorem strlem5

Description: Lemma for strong state theorem. (Contributed by NM, 2-Nov-1999) (New usage is discouraged.)

Ref Expression
Hypotheses strlem3.1 S=xCnormprojxu2
strlem3.2 φuABnormu=1
strlem3.3 AC
strlem3.4 BC
Assertion strlem5 φSB<1

Proof

Step Hyp Ref Expression
1 strlem3.1 S=xCnormprojxu2
2 strlem3.2 φuABnormu=1
3 strlem3.3 AC
4 strlem3.4 BC
5 1 strlem2 BCSB=normprojBu2
6 4 5 ax-mp SB=normprojBu2
7 eldif uABuA¬uB
8 3 cheli uAu
9 pjnel BCu¬uBnormprojBu<normu
10 4 9 mpan u¬uBnormprojBu<normu
11 10 biimpa u¬uBnormprojBu<normu
12 8 11 sylan uA¬uBnormprojBu<normu
13 7 12 sylbi uABnormprojBu<normu
14 breq2 normu=1normprojBu<normunormprojBu<1
15 13 14 imbitrid normu=1uABnormprojBu<1
16 15 impcom uABnormu=1normprojBu<1
17 eldifi uABuA
18 4 pjhcli uprojBu
19 normcl projBunormprojBu
20 18 19 syl unormprojBu
21 normge0 projBu0normprojBu
22 18 21 syl u0normprojBu
23 1re 1
24 0le1 01
25 lt2sq normprojBu0normprojBu101normprojBu<1normprojBu2<12
26 23 24 25 mpanr12 normprojBu0normprojBunormprojBu<1normprojBu2<12
27 20 22 26 syl2anc unormprojBu<1normprojBu2<12
28 17 8 27 3syl uABnormprojBu<1normprojBu2<12
29 28 adantr uABnormu=1normprojBu<1normprojBu2<12
30 16 29 mpbid uABnormu=1normprojBu2<12
31 6 30 eqbrtrid uABnormu=1SB<12
32 sq1 12=1
33 31 32 breqtrdi uABnormu=1SB<1
34 2 33 sylbi φSB<1