Metamath Proof Explorer


Theorem submafval

Description: First substitution for a submatrix. (Contributed by AV, 28-Dec-2018)

Ref Expression
Hypotheses submafval.a A=NMatR
submafval.q Q=NsubMatR
submafval.b B=BaseA
Assertion submafval Q=mBkN,lNiNk,jNlimj

Proof

Step Hyp Ref Expression
1 submafval.a A=NMatR
2 submafval.q Q=NsubMatR
3 submafval.b B=BaseA
4 oveq12 n=Nr=RnMatr=NMatR
5 4 1 eqtr4di n=Nr=RnMatr=A
6 5 fveq2d n=Nr=RBasenMatr=BaseA
7 6 3 eqtr4di n=Nr=RBasenMatr=B
8 simpl n=Nr=Rn=N
9 difeq1 n=Nnk=Nk
10 9 adantr n=Nr=Rnk=Nk
11 difeq1 n=Nnl=Nl
12 11 adantr n=Nr=Rnl=Nl
13 eqidd n=Nr=Rimj=imj
14 10 12 13 mpoeq123dv n=Nr=Rink,jnlimj=iNk,jNlimj
15 8 8 14 mpoeq123dv n=Nr=Rkn,lnink,jnlimj=kN,lNiNk,jNlimj
16 7 15 mpteq12dv n=Nr=RmBasenMatrkn,lnink,jnlimj=mBkN,lNiNk,jNlimj
17 df-subma subMat=nV,rVmBasenMatrkn,lnink,jnlimj
18 3 fvexi BV
19 18 mptex mBkN,lNiNk,jNlimjV
20 16 17 19 ovmpoa NVRVNsubMatR=mBkN,lNiNk,jNlimj
21 17 mpondm0 ¬NVRVNsubMatR=
22 mpt0 mkN,lNiNk,jNlimj=
23 21 22 eqtr4di ¬NVRVNsubMatR=mkN,lNiNk,jNlimj
24 1 fveq2i BaseA=BaseNMatR
25 3 24 eqtri B=BaseNMatR
26 matbas0pc ¬NVRVBaseNMatR=
27 25 26 eqtrid ¬NVRVB=
28 27 mpteq1d ¬NVRVmBkN,lNiNk,jNlimj=mkN,lNiNk,jNlimj
29 23 28 eqtr4d ¬NVRVNsubMatR=mBkN,lNiNk,jNlimj
30 20 29 pm2.61i NsubMatR=mBkN,lNiNk,jNlimj
31 2 30 eqtri Q=mBkN,lNiNk,jNlimj