Metamath Proof Explorer


Theorem submafval

Description: First substitution for a submatrix. (Contributed by AV, 28-Dec-2018)

Ref Expression
Hypotheses submafval.a A = N Mat R
submafval.q Q = N subMat R
submafval.b B = Base A
Assertion submafval Q = m B k N , l N i N k , j N l i m j

Proof

Step Hyp Ref Expression
1 submafval.a A = N Mat R
2 submafval.q Q = N subMat R
3 submafval.b B = Base A
4 oveq12 n = N r = R n Mat r = N Mat R
5 4 1 eqtr4di n = N r = R n Mat r = A
6 5 fveq2d n = N r = R Base n Mat r = Base A
7 6 3 eqtr4di n = N r = R Base n Mat r = B
8 simpl n = N r = R n = N
9 difeq1 n = N n k = N k
10 9 adantr n = N r = R n k = N k
11 difeq1 n = N n l = N l
12 11 adantr n = N r = R n l = N l
13 eqidd n = N r = R i m j = i m j
14 10 12 13 mpoeq123dv n = N r = R i n k , j n l i m j = i N k , j N l i m j
15 8 8 14 mpoeq123dv n = N r = R k n , l n i n k , j n l i m j = k N , l N i N k , j N l i m j
16 7 15 mpteq12dv n = N r = R m Base n Mat r k n , l n i n k , j n l i m j = m B k N , l N i N k , j N l i m j
17 df-subma subMat = n V , r V m Base n Mat r k n , l n i n k , j n l i m j
18 3 fvexi B V
19 18 mptex m B k N , l N i N k , j N l i m j V
20 16 17 19 ovmpoa N V R V N subMat R = m B k N , l N i N k , j N l i m j
21 17 mpondm0 ¬ N V R V N subMat R =
22 mpt0 m k N , l N i N k , j N l i m j =
23 21 22 eqtr4di ¬ N V R V N subMat R = m k N , l N i N k , j N l i m j
24 1 fveq2i Base A = Base N Mat R
25 3 24 eqtri B = Base N Mat R
26 matbas0pc ¬ N V R V Base N Mat R =
27 25 26 eqtrid ¬ N V R V B =
28 27 mpteq1d ¬ N V R V m B k N , l N i N k , j N l i m j = m k N , l N i N k , j N l i m j
29 23 28 eqtr4d ¬ N V R V N subMat R = m B k N , l N i N k , j N l i m j
30 20 29 pm2.61i N subMat R = m B k N , l N i N k , j N l i m j
31 2 30 eqtri Q = m B k N , l N i N k , j N l i m j